更多类型:struct、slice 和映射
学习如何基于现有类型定义新的类型:本节课涵盖了结构体、数组、切片和映射。
Go 作者组编写,Go-zh 小组翻译。
https://tour.go-zh.org/moretypes/1
- 指针
Go 拥有指针。指针保存了值的内存地址。
类型 *T
是指向 T
类型值的指针。其零值为 nil
。
var p *int
&
操作符会生成一个指向其操作数的指针。
i := 42
p = &i
*
操作符表示指针指向的底层值。
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i
这也就是通常所说的“间接引用”或“重定向”。
与 C 不同,Go 没有指针运算。
// +build OMIT
package main
import "fmt"
func main() {
i, j := 42, 2701
p := &i // 指向 i
fmt.Println(*p) // 通过指针读取 i 的值,42
*p = 21 // 通过指针设置 i 的值
fmt.Println(i) // 查看 i 的值,21
p = &j // 指向 j
*p = *p / 37 // 通过指针对 j 进行除法运算
fmt.Println(j) // 查看 j 的值,73
}
- 结构体
一个结构体(struct
)就是一组字段(field)。
// +build OMIT
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
fmt.Println(Vertex{1, 2})
}
- 结构体字段
结构体字段使用点号来访问。
// +build OMIT
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}
- 结构体指针
结构体字段可以通过结构体指针来访问。
如果我们有一个指向结构体的指针 p
,那么可以通过 (*p).X
来访问其字段 X
。不过这么写太啰嗦了,所以语言也允许我们使用隐式间接引用,直接写 p.X
就可以。
// +build OMIT
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
p := &v
p.X = 1e9
fmt.Println(v) //{1000000000 2}
}
- 结构体文法
结构体文法通过直接列出字段的值来新分配一个结构体。
使用 Name:
语法可以仅列出部分字段。(字段名的顺序无关。)
特殊的前缀 &
返回一个指向结构体的指针。
// +build OMIT
package main
import "fmt"
type Vertex struct {
X, Y int
}
var (
v1 = Vertex{1, 2} // 创建一个 Vertex 类型的结构体
v2 = Vertex{X: 1} // Y:0 被隐式地赋予
v3 = Vertex{} // X:0 Y:0
p = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
)
func main() {
fmt.Println(v1, p, v2, v3) //{1 2} &{1 2} {1 0} {0 0}
}
- 数组
类型 [n]T
表示拥有 n
个 T
类型的值的数组。
表达式
var a [10]int
会将变量 a
声明为拥有 10 个整数的数组。
数组的长度是其类型的一部分,因此数组不能改变大小。这看起来是个限制,不过没关系,Go 提供了更加便利的方式来使用数组。
// +build OMIT
package main
import "fmt"
func main() {
var a [2]string
a[0] = "Hello"
a[1] = "World"
fmt.Println(a[0], a[1])
fmt.Println(a)
primes := [6]int{2, 3, 5, 7, 11, 13}
fmt.Println(primes)
}
- 切片
每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。
类型 []T
表示一个元素类型为 T
的切片。
切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:
a[low : high]
它会选择一个半开区间,包括第一个元素,但排除最后一个元素。
以下表达式创建了一个切片,它包含 a
中下标从 1 到 3 的元素:
a[1:4]
// +build OMIT
package main
import "fmt"
func main() {
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s)
}
- 切片就像数组的引用
切片并不存储任何数据,它只是描述了底层数组中的一段。
更改切片的元素会修改其底层数组中对应的元素。
与它共享底层数组的切片都会观测到这些修改。
// +build OMIT
package main
import "fmt"
func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names) //[John Paul George Ringo]
a := names[0:2]
b := names[1:3]
fmt.Println(a, b) //[John Paul] [Paul George]
b[0] = "XXX"
fmt.Println(a, b) //[John XXX] [XXX George]
fmt.Println(names) //[John XXX George Ringo]
}
- 切片文法
切片文法类似于没有长度的数组文法。
这是一个数组文法:
[3]bool{true, true, false}
下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:
[]bool{true, true, false}
// +build OMIT
package main
import "fmt"
func main() {
q := []int{2, 3, 5, 7, 11, 13}
fmt.Println(q) //[2 3 5 7 11 13]
r := []bool{true, false, true, true, false, true}
fmt.Println(r) //[true false true true false true]
s := []struct {
i int
b bool
}{
{2, true},
{3, false},
{5, true},
{7, true},
{11, false},
{13, true},
}
fmt.Println(s) //[{2 true} {3 false} {5 true} {7 true} {11 false} {13 true}]
}
- 切片的默认行为
在进行切片时,你可以利用它的默认行为来忽略上下界。
切片下界的默认值为 0
,上界则是该切片的长度。
对于数组
var a [10]int
来说,以下切片是等价的:
a[0:10]
a[:10]
a[0:]
a[:]
// +build OMIT
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
s = s[1:4]
fmt.Println(s) //[3 5 7]
s = s[:2]
fmt.Println(s) //[3 5]
s = s[1:]
fmt.Println(s) //[5]
}
- 切片的长度与容量
切片拥有 长度 和 容量。
切片的长度就是它所包含的元素个数。
切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。
切片 s
的长度和容量可通过表达式 len(s)
和 cap(s)
来获取。
只要具有足够的容量,你就可以通过重新切片来扩展一个切片。请试着修改示例程序中的某个切片操作,使其长度超过容量(即将它扩展到超出其容量范围),看看会发生什么。
// +build OMIT
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s) //len=6 cap=6 [2 3 5 7 11 13]
// 截取切片使其长度为 0
s = s[:0]
printSlice(s) //len=0 cap=6 []
// 拓展其长度
s = s[:4]
printSlice(s) //len=4 cap=6 [2 3 5 7]
// 舍弃前两个值
s = s[2:]
printSlice(s) //len=2 cap=4 [5 7]
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v
", len(s), cap(s), s)
}
- nil 切片
切片的零值是 nil
。
nil 切片的长度和容量为 0 且没有底层数组。
// +build OMIT
package main
import "fmt"
func main() {
var s []int
fmt.Println(s, len(s), cap(s))
if s == nil {
fmt.Println("nil!")
}
}
- 用 make 创建切片
切片可以用内建函数 make
来创建,这也是你创建动态数组的方式。
make
函数会分配一个元素为零值的数组并返回一个引用了它的切片:
a := make([]int, 5) // len(a)=5
要指定它的容量,需向 make
传入第三个参数:
b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4
// +build OMIT
package main
import "fmt"
func main() {
a := make([]int, 5)
printSlice("a", a) //a len=5 cap=5 [0 0 0 0 0]
b := make([]int, 0, 5)
printSlice("b", b) //b len=0 cap=5 []
c := b[:2]
printSlice("c", c) //c len=2 cap=5 [0 0]
d := c[2:5]
printSlice("d", d) //d len=3 cap=3 [0 0 0]
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v
",
s, len(x), cap(x), x)
}
- 切片的切片
切片可包含任何类型,甚至包括其它的切片。
// +build OMIT
package main
import (
"fmt"
"strings"
)
func main() {
// 创建一个井字板(经典游戏)
board := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}
// 两个玩家轮流打上 X 和 O
board[0][0] = "X"
board[2][2] = "O"
board[1][2] = "X"
board[1][0] = "O"
board[0][2] = "X"
for i := 0; i < len(board); i++ {
fmt.Printf("%s
", strings.Join(board[i], " "))
}
}
- 向切片追加元素
为切片追加新的元素是种常用的操作,为此 Go 提供了内建的 append
函数。内建函数的[[https://go-zh.org/pkg/builtin/#append][文档]]对此函数有详细的介绍。
func append(s []T, vs ...T) []T
append
的第一个参数 s
是一个元素类型为 T
的切片,其余类型为 T
的值将会追加到该切片的末尾。
append
的结果是一个包含原切片所有元素加上新添加元素的切片。
当 s
的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。返回的切片会指向这个新分配的数组。
(要了解关于切片的更多内容,请阅读文章 [[https://blog.go-zh.org/go-slices-usage-and-internals][Go 切片:用法和本质]]。)
// +build OMIT
package main
import "fmt"
func main() {
var s []int
printSlice(s) //len=0 cap=0 []
// 添加一个空切片
s = append(s, 0)
printSlice(s) //len=1 cap=2 [0]
// 这个切片会按需增长
s = append(s, 1)
printSlice(s) //len=2 cap=2 [0 1]
// 可以一次性添加多个元素
s = append(s, 2, 3, 4)
printSlice(s) //len=5 cap=8 [0 1 2 3 4]
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v
", len(s), cap(s), s)
}
- Range
for
循环的 range
形式可遍历切片或映射。
当使用 for
循环遍历切片时,每次迭代都会返回两个值。第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。
// +build OMIT
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d
", i, v)
}
}
20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128
- range(续)
可以将下标或值赋予 _
来忽略它。
for i, _ := range pow
for _, value := range pow
若你只需要索引,忽略第二个变量即可。
for i := range pow
// +build OMIT
package main
import "fmt"
func main() {
pow := make([]int, 10)
for i := range pow {
pow[i] = 1 << uint(i) // == 2**i
}
for _, value := range pow {
fmt.Printf("%d
", value)
}
}
- 练习:切片
实现 Pic
。它应当返回一个长度为 dy
的切片,其中每个元素是一个长度为 dx
,元素类型为 uint8
的切片。当你运行此程序时,它会将每个整数解释为灰度值(好吧,其实是蓝度值)并显示它所对应的图像。
图像的选择由你来定。几个有趣的函数包括 (x+y)/2
, x*y
, x^y
, x*log(y)
和 x%(y+1)
。
(提示:需要使用循环来分配 [][]uint8
中的每个 []uint8
;请使用 uint8(intValue)
在类型之间转换;你可能会用到 math
包中的函数。)
package main
import "golang.org/x/tour/pic"
func Pic(dx, dy int) [][]uint8 {
a:=make([][]uint8, dy)
for i:=0; i<dy; i++{
a[i]=make([]uint8, dx)
}
return a
}
func main() {
pic.Show(Pic)
}
- 映射 (
map
)
映射将键映射到值。
映射的零值为 nil
。nil
映射既没有键,也不能添加键。
make
函数会返回给定类型的映射,并将其初始化备用。
// +build OMIT
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m map[string]Vertex
func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}
- 映射的文法
映射的文法与结构体相似,不过必须有键名。
// +build OMIT
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": Vertex{
40.68433, -74.39967,
},
"Google": Vertex{
37.42202, -122.08408,
},
}
func main() {
fmt.Println(m)
}
- 映射的文法(续)
若顶级类型只是一个类型名,你可以在文法的元素中省略它。
// +build OMIT
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
"Google": {37.42202, -122.08408},
}
func main() {
fmt.Println(m)
}
- 修改映射
在映射 m
中插入或修改元素:
m[key] = elem
获取元素:
elem = m[key]
删除元素:
delete(m, key)
通过双赋值检测某个键是否存在:
elem, ok = m[key]
若 key
在 m
中,ok
为 true
;否则,ok
为 false
。
若 key
不在映射中,那么 elem
是该映射元素类型的零值。
同样的,当从映射中读取某个不存在的键时,结果是映射的元素类型的零值。
注 :若 elem
或 ok
还未声明,你可以使用短变量声明:
elem, ok := m[key]
// +build OMIT
package main
import "fmt"
func main() {
m := make(map[string]int)
m["Answer"] = 42
fmt.Println("The value:", m["Answer"])
m["Answer"] = 48
fmt.Println("The value:", m["Answer"])
delete(m, "Answer")
fmt.Println("The value:", m["Answer"])
v, ok := m["Answer"]
fmt.Println("The value:", v, "Present?", ok)
}
- 练习:映射
实现 WordCount
。它应当返回一个映射,其中包含字符串 s
中每个“单词”的个数。函数 wc.Test
会对此函数执行一系列测试用例,并输出成功还是失败。
你会发现 [[https://go-zh.org/pkg/strings/#Fields][strings.Fields]] 很有帮助。
package main
import (
"golang.org/x/tour/wc"
"strings"
)
func WordCount(s string) map[string]int {
m := make(map[string]int)
kv:=strings.Split(s, " ")
lv:=len(kv)
for i:=0; i<lv; i++{
skv := kv[i]
elm, eok := m[skv]
if eok{
m[skv]=elm+1
} else {
m[skv]=1
}
}
return m
}
func main() {
wc.Test(WordCount)
}
- 函数值
函数也是值。它们可以像其它值一样传递。
函数值可以用作函数的参数或返回值。
// +build OMIT
package main
import (
"fmt"
"math"
)
func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}
func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x*x + y*y)
}
fmt.Println(hypot(5, 12)) //13
fmt.Println(compute(hypot)) //5
fmt.Println(compute(math.Pow)) //81
}
- 函数的闭包
Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。
例如,函数 adder
返回一个闭包。每个闭包都被绑定在其各自的 sum
变量上。
// +build OMIT
package main
import "fmt"
func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}
func main() {
pos, neg := adder(), adder() //pos, neg可理解为一个class,包含变量sum和函数func
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2*i),
)
}
}
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
- 练习:斐波纳契闭包
让我们用函数做些好玩的事情。
实现一个 fibonacci
函数,它返回一个函数(闭包),该闭包返回一个[[https://zh.wikipedia.org/wiki/斐波那契数列][斐波纳契数列]] (0, 1, 1, 2, 3, 5, ...)
。
package main
import "fmt"
// 返回一个“返回int的函数”
func fibonacci() func() int {
m:=0
x:=0
y:=1
return func() int{
m=x
x=y
y=x+m
return m
}
}
func main() {
f := fibonacci()
for i := 0; i < 10; i++ {
fmt.Println(f())
}
}
- 恭喜!
你已经完成了本课程!
你可以返回[[/list][模块列表]]看看接下来学习什么,或者继续[[javascript:click('.next-page')][后面的课程]]。