• Beautiful and Powerful Correlation Tables in R


    Another correlation function?!

    Yes, the correlation function from the psycho package.

    devtools::install_github("neuropsychology/psycho.R")  # Install the newest version
    
    library(psycho)
    library(tidyverse)
    
    cor <- psycho::affective %>% 
      correlation()

    This function automatically select numeric variables and run a correlation analysis. It returns apsychobject.

    A table

    We can then extract a formatted table that can be saved and pasted into reports and manuscripts by using the summary function.

    summary(cor)
    # write.csv(summary(cor), "myformattedcortable.csv")
     AgeLife_SatisfactionConcealingAdjusting
    Age        
    Life_Satisfaction 0.03      
    Concealing -0.05 -0.06    
    Adjusting 0.03 0.36*** 0.22***  
    Tolerating 0.03 0.15*** 0.07 0.29***

    A Plot

    It integrates a plot done with ggcorplot.

    plot(cor)

    A print

    It also includes a pairwise correlation printing method.

    print(cor)
    Pearson Full correlation (p value correction: holm):
    
       - Age / Life_Satisfaction:   Results of the Pearson correlation showed a non significant and weak negative association between Age and Life_Satisfaction (r(1249) = 0.030, p > .1).
       - Age / Concealing:   Results of the Pearson correlation showed a non significant and weak positive association between Age and Concealing (r(1249) = -0.050, p > .1).
       - Life_Satisfaction / Concealing:   Results of the Pearson correlation showed a non significant and weak positive association between Life_Satisfaction and Concealing (r(1249) = -0.063, p > .1).
       - Age / Adjusting:   Results of the Pearson correlation showed a non significant and weak negative association between Age and Adjusting (r(1249) = 0.027, p > .1).
       - Life_Satisfaction / Adjusting:   Results of the Pearson correlation showed a significant and moderate negative association between Life_Satisfaction and Adjusting (r(1249) = 0.36, p < .001***).
       - Concealing / Adjusting:   Results of the Pearson correlation showed a significant and weak negative association between Concealing and Adjusting (r(1249) = 0.22, p < .001***).
       - Age / Tolerating:   Results of the Pearson correlation showed a non significant and weak negative association between Age and Tolerating (r(1249) = 0.031, p > .1).
       - Life_Satisfaction / Tolerating:   Results of the Pearson correlation showed a significant and weak negative association between Life_Satisfaction and Tolerating (r(1249) = 0.15, p < .001***).
       - Concealing / Tolerating:   Results of the Pearson correlation showed a non significant and weak negative association between Concealing and Tolerating (r(1249) = 0.074, p = 0.05°).
       - Adjusting / Tolerating:   Results of the Pearson correlation showed a significant and weak negative association between Adjusting and Tolerating (r(1249) = 0.29, p < .001***).
    

    Options

    You can also cutomize the type (pearson, spearman or kendall), the p value correction method(holm (default), bonferroni, fdr, none…) and run partial, semi-partial or glasso correlations.

    psycho::affective %>% 
      correlation(method = "pearson", adjust="bonferroni", type="partial") %>% 
      summary()
     AgeLife_SatisfactionConcealingAdjusting
    Age        
    Life_Satisfaction 0.01      
    Concealing -0.06 -0.16***    
    Adjusting 0.02 0.36*** 0.25***  
    Tolerating 0.02 0.06 0.02 0.24***

    Fun with p-hacking

    In order to prevent people for running many uncorrected correlation tests (promoting p-hacking and result-fishing), we included the i_am_cheating parameter. If FALSE (default), the function will help you finding interesting results!

    df_with_11_vars <- data.frame(replicate(11, rnorm(1000)))
    cor <- correlation(df_with_11_vars, adjust="none")
    ## Warning in correlation(df_with_11_vars, adjust = "none"): We've detected that you are running a lot (> 10) of correlation tests without adjusting the p values. To help you in your p-fishing, we've added some interesting variables: You never know, you might find something significant!
    ## To deactivate this, change the 'i_am_cheating' argument to TRUE.
    
    summary(cor)
     X1X2X3X4X5X6X7X8X9X10X11
    X1                      
    X2 -0.04                    
    X3 -0.04 -0.02                  
    X4 0.02 0.05 -0.02                
    X5 -0.01 -0.02 0.05 -0.03              
    X6 -0.03 0.03 0.08* 0.02 0.02            
    X7 0.03 -0.01 -0.02 -0.04 -0.03 -0.04          
    X8 0.01 -0.07* 0.04 0.02 -0.01 -0.01 0.00        
    X9 -0.02 0.03 -0.03 -0.02 0.00 -0.04 0.03 -0.02      
    X10 -0.03 0.00 0.00 0.01 0.01 -0.01 0.01 -0.02 0.02    
    X11 0.01 0.01 -0.03 -0.05 0.00 0.05 0.01 0.00 -0.01 0.07*  
    Local_Air_Density 0.26*** -0.02 -0.44*** -0.15*** -0.25*** -0.50*** 0.57*** -0.11*** 0.47*** 0.06 0.01
    Reincarnation_Cycle -0.03 -0.02 0.02 0.04 0.01 0.00 0.05 -0.04 -0.05 -0.01 0.03
    Communism_Level 0.58*** -0.44*** 0.04 0.06 -0.10** -0.18*** 0.10** 0.46*** -0.50*** -0.21*** -0.14***
    Alien_Mothership_Distance 0.00 -0.03 0.01 0.00 -0.01 -0.03 -0.04 0.01 0.01 -0.02 0.00
    Schopenhauers_Optimism 0.11*** 0.31*** -0.25*** 0.64*** -0.29*** -0.15*** -0.35*** -0.09** 0.08* -0.22*** -0.47***
    Hulks_Power 0.03 0.00 0.02 0.03 -0.02 -0.01 -0.05 -0.01 0.00 0.01 0.03

    As we can see, Schopenhauer’s Optimism is strongly related to many variables!!!

    Credits

    This package was useful? You can cite psycho as follows:

    • Makowski, (2018). The psycho Package: an Efficient and Publishing-Oriented Workflow for Psychological Science. Journal of Open Source Software, 3(22), 470.https://doi.org/10.21105/joss.00470

    转自:https://neuropsychology.github.io/psycho.R//2018/05/20/correlation.html

  • 相关阅读:
    JS中的prototype
    Php5.3的lambda函数以及closure(闭包)
    JavaScript事件委托的技术原理
    css 里层元素撑不开外层元素
    扩展VirtualBox虚拟机磁盘容量
    easyUI 条件查询 跟分页数据展示写在了一起的
    (转)Hibernate中关于多表连接查询hql 和 sql 返回值集合中对象问题
    有想去北京工作的的想法了
    第一次写oracle SQL 两个表链接查询
    第三天 SQL小记
  • 原文地址:https://www.cnblogs.com/payton/p/9070525.html
Copyright © 2020-2023  润新知