假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
思路:可以这样想,n个台阶,一开始可以爬 1 步,也可以爬 2 步,那么n个台阶爬楼的爬楼方法就等于 一开始爬1步的方法数 + 一开始爬2步的方法数,这样我们就只需要计算n-1个台阶的方法数
和n-2个台阶方法数,同理,计算n-1个台阶的方法数只需要计算一下n-2个台阶和n-3个台阶,计算n-2个台阶需要计算一下n-3个台阶和n-4个台阶……
class Solution { public int climbStairs(int n) { if(n==1)return 1; int sum[]=new int[n+1]; sum[0]=0;sum[1]=1;sum[2]=2; for(int i=3;i<=n;i++){ sum[i]=sum[i-2]+sum[i-1]; } return sum[n]; } }