• c语言实行泛型hashmap


    代码出处:A simple string hashmap in C  https://github.com/petewarden/c_hashmap

    main.c

    (main2是官方源代码,main是博主写的代码,实现了String类型及Char类型的存取,看官可以根据以下代码触类旁通,限于博主的c语言

    功底有限,此处的实现仅为poc代码,不保证严谨性以及稳定性,如果使用到生产环境请多斟酌,测试,如果你有更完善的代码分享,将感激不尽)

    /*
    * A unit test and example of how to use the simple C hashmap
    */
    
    #include <stdlib.h>
    #include <stdio.h>
    #include <assert.h>
    
    #include "hashmap.h"
    
    #define KEY_MAX_LENGTH (256)
    #define KEY_PREFIX ("somekey")
    #define KEY_COUNT (1024*1024)
    
    typedef struct data_struct_s
    {
        char key_string[KEY_MAX_LENGTH];
        int number;
    } data_struct_t;
    
    typedef struct data_struct_String
    {
        char key_string[KEY_MAX_LENGTH];
        char str[20];
    } ds_String;
    
    typedef struct data_struct_Char
    {
        char key_string[KEY_MAX_LENGTH];
        char ch;
    }ds_Char;
    
    void hashmap_putString(map_t *map, ds_String *string)
    {
        hashmap_put(map, string->key_string, string);
    }
    void hashmap_getStringValue(map_t *map, char* key)
    {
        ds_String *out;
        hashmap_get(map, key, (void**)(&out));
    
        printf("key:%s, value:%s
    ", out->key_string, out->str);
    }
    
    void hashmap_putChar(map_t *map, ds_Char *ch)
    {
        hashmap_put(map, ch->key_string, ch);
    }
    void hashmap_getCharValue(map_t *map, char* key)
    {
        ds_Char *out;
        hashmap_get(map, key, (void**)(&out));
    
        printf("key:%s, value:%c
    ", out->key_string, out->ch);
    }
    int main()
    {
        map_t mymap;
        mymap = hashmap_new();
        
        ds_String *str;
        
    
        ds_Char *ch;
    
    
        str = malloc(sizeof(ds_String));
    
        ch = malloc(sizeof(ds_Char));
    
        //写入String值
        snprintf(str->key_string, KEY_MAX_LENGTH, "%s%d", "str", 1);
        strcpy(str->str, "hello World");
        hashmap_putString(mymap, str);
        hashmap_getStringValue(mymap, str->key_string);
    
        //写入Char
        ch->ch = 'A';
        snprintf(ch->key_string, KEY_COUNT, "%s%d", "ch", 1);
        hashmap_putChar(mymap, ch);
        hashmap_getCharValue(mymap, ch->key_string);  
    }
    
    
    int main2(char* argv, int argc)
    {
        int index;
        int error;
        map_t mymap;
        char key_string[KEY_MAX_LENGTH];
        data_struct_t* value;
    
        mymap = hashmap_new();
    
        /* First, populate the hash map with ascending values */
        for (index = 0; index<KEY_COUNT; index += 1)
        {
            /* Store the key string along side the numerical value so we can free it later */
            value = malloc(sizeof(data_struct_t));
            snprintf(value->key_string, KEY_MAX_LENGTH, "%s%d", KEY_PREFIX, index);
            value->number = index;
    
            error = hashmap_put(mymap, value->key_string, value);
            assert(error == MAP_OK);
        }
    
        /* Now, check all of the expected values are there */
        for (index = 0; index<KEY_COUNT; index += 1)
        {
            snprintf(key_string, KEY_MAX_LENGTH, "%s%d", KEY_PREFIX, index);
    
            error = hashmap_get(mymap, key_string, (void**)(&value));
    
            /* Make sure the value was both found and the correct number */
            assert(error == MAP_OK);
            assert(value->number == index);
        }
    
        /* Make sure that a value that wasn't in the map can't be found */
        snprintf(key_string, KEY_MAX_LENGTH, "%s%d", KEY_PREFIX, KEY_COUNT);
    
        error = hashmap_get(mymap, key_string, (void**)(&value));
    
        /* Make sure the value was not found */
        assert(error == MAP_MISSING);
    
        /* Free all of the values we allocated and remove them from the map */
        for (index = 0; index<KEY_COUNT; index += 1)
        {
            snprintf(key_string, KEY_MAX_LENGTH, "%s%d", KEY_PREFIX, index);
    
            error = hashmap_get(mymap, key_string, (void**)(&value));
            assert(error == MAP_OK);
    
            error = hashmap_remove(mymap, key_string);
            assert(error == MAP_OK);
    
            free(value);
        }
    
        /* Now, destroy the map */
        hashmap_free(mymap);
    
        return 1;
    }

    输出结果

    hashmap.h

    /*
     * Generic hashmap manipulation functions
     *
     * Originally by Elliot C Back - http://elliottback.com/wp/hashmap-implementation-in-c/
     *
     * Modified by Pete Warden to fix a serious performance problem, support strings as keys
     * and removed thread synchronization - http://petewarden.typepad.com
     */
    #ifndef __HASHMAP_H__
    #define __HASHMAP_H__
    
    #define MAP_MISSING -3  /* No such element */
    #define MAP_FULL -2     /* Hashmap is full */
    #define MAP_OMEM -1     /* Out of Memory */
    #define MAP_OK 0     /* OK */
    
    /*
     * any_t is a pointer.  This allows you to put arbitrary structures in
     * the hashmap.
     */
    typedef void *any_t;
    
    /*
     * PFany is a pointer to a function that can take two any_t arguments
     * and return an integer. Returns status code..
     */
    typedef int (*PFany)(any_t, any_t);
    
    /*
     * map_t is a pointer to an internally maintained data structure.
     * Clients of this package do not need to know how hashmaps are
     * represented.  They see and manipulate only map_t's.
     */
    typedef any_t map_t;
    
    /*
     * Return an empty hashmap. Returns NULL if empty.
    */
    extern map_t hashmap_new();
    
    /*
     * Iteratively call f with argument (item, data) for
     * each element data in the hashmap. The function must
     * return a map status code. If it returns anything other
     * than MAP_OK the traversal is terminated. f must
     * not reenter any hashmap functions, or deadlock may arise.
     */
    extern int hashmap_iterate(map_t in, PFany f, any_t item);
    
    /*
     * Add an element to the hashmap. Return MAP_OK or MAP_OMEM.
     */
    extern int hashmap_put(map_t in, char* key, any_t value);
    
    /*
     * Get an element from the hashmap. Return MAP_OK or MAP_MISSING.
     */
    extern int hashmap_get(map_t in, char* key, any_t *arg);
    
    /*
     * Remove an element from the hashmap. Return MAP_OK or MAP_MISSING.
     */
    extern int hashmap_remove(map_t in, char* key);
    
    /*
     * Get any element. Return MAP_OK or MAP_MISSING.
     * remove - should the element be removed from the hashmap
     */
    extern int hashmap_get_one(map_t in, any_t *arg, int remove);
    
    /*
     * Free the hashmap
     */
    extern void hashmap_free(map_t in);
    
    /*
     * Get the current size of a hashmap
     */
    extern int hashmap_length(map_t in);
    
    #endif __HASHMAP_H__

    hashmap.c

    /*
     * Generic map implementation.
     */
    #include "hashmap.h"
    
    #include <stdlib.h>
    #include <stdio.h>
    #include <string.h>
    
    #define INITIAL_SIZE (256)
    #define MAX_CHAIN_LENGTH (8)
    
    /* We need to keep keys and values */
    typedef struct _hashmap_element{
        char* key;
        int in_use;
        any_t data;
    } hashmap_element;
    
    /* A hashmap has some maximum size and current size,
     * as well as the data to hold. */
    typedef struct _hashmap_map{
        int table_size;
        int size;
        hashmap_element *data;
    } hashmap_map;
    
    /*
     * Return an empty hashmap, or NULL on failure.
     */
    map_t hashmap_new() {
        hashmap_map* m = (hashmap_map*) malloc(sizeof(hashmap_map));
        if(!m) goto err;
    
        m->data = (hashmap_element*) calloc(INITIAL_SIZE, sizeof(hashmap_element));
        if(!m->data) goto err;
    
        m->table_size = INITIAL_SIZE;
        m->size = 0;
    
        return m;
        err:
            if (m)
                hashmap_free(m);
            return NULL;
    }
    
    /* The implementation here was originally done by Gary S. Brown.  I have
       borrowed the tables directly, and made some minor changes to the
       crc32-function (including changing the interface). //ylo */
    
      /* ============================================================= */
      /*  COPYRIGHT (C) 1986 Gary S. Brown.  You may use this program, or       */
      /*  code or tables extracted from it, as desired without restriction.     */
      /*                                                                        */
      /*  First, the polynomial itself and its table of feedback terms.  The    */
      /*  polynomial is                                                         */
      /*  X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0   */
      /*                                                                        */
      /*  Note that we take it "backwards" and put the highest-order term in    */
      /*  the lowest-order bit.  The X^32 term is "implied"; the LSB is the     */
      /*  X^31 term, etc.  The X^0 term (usually shown as "+1") results in      */
      /*  the MSB being 1.                                                      */
      /*                                                                        */
      /*  Note that the usual hardware shift register implementation, which     */
      /*  is what we're using (we're merely optimizing it by doing eight-bit    */
      /*  chunks at a time) shifts bits into the lowest-order term.  In our     */
      /*  implementation, that means shifting towards the right.  Why do we     */
      /*  do it this way?  Because the calculated CRC must be transmitted in    */
      /*  order from highest-order term to lowest-order term.  UARTs transmit   */
      /*  characters in order from LSB to MSB.  By storing the CRC this way,    */
      /*  we hand it to the UART in the order low-byte to high-byte; the UART   */
      /*  sends each low-bit to hight-bit; and the result is transmission bit   */
      /*  by bit from highest- to lowest-order term without requiring any bit   */
      /*  shuffling on our part.  Reception works similarly.                    */
      /*                                                                        */
      /*  The feedback terms table consists of 256, 32-bit entries.  Notes:     */
      /*                                                                        */
      /*      The table can be generated at runtime if desired; code to do so   */
      /*      is shown later.  It might not be obvious, but the feedback        */
      /*      terms simply represent the results of eight shift/xor opera-      */
      /*      tions for all combinations of data and CRC register values.       */
      /*                                                                        */
      /*      The values must be right-shifted by eight bits by the "updcrc"    */
      /*      logic; the shift must be unsigned (bring in zeroes).  On some     */
      /*      hardware you could probably optimize the shift in assembler by    */
      /*      using byte-swap instructions.                                     */
      /*      polynomial $edb88320                                              */
      /*                                                                        */
      /*  --------------------------------------------------------------------  */
    
    static unsigned long crc32_tab[] = {
          0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
          0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
          0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
          0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
          0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
          0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
          0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
          0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
          0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
          0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
          0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
          0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
          0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
          0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
          0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
          0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
          0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
          0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
          0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
          0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
          0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
          0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
          0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
          0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
          0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
          0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
          0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
          0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
          0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
          0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
          0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
          0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
          0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
          0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
          0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
          0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
          0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
          0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
          0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
          0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
          0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
          0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
          0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
          0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
          0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
          0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
          0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
          0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
          0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
          0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
          0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
          0x2d02ef8dL
       };
    
    /* Return a 32-bit CRC of the contents of the buffer. */
    
    unsigned long crc32(const unsigned char *s, unsigned int len)
    {
      unsigned int i;
      unsigned long crc32val;
      
      crc32val = 0;
      for (i = 0;  i < len;  i ++)
        {
          crc32val =
        crc32_tab[(crc32val ^ s[i]) & 0xff] ^
          (crc32val >> 8);
        }
      return crc32val;
    }
    
    /*
     * Hashing function for a string
     */
    unsigned int hashmap_hash_int(hashmap_map * m, char* keystring){
    
        unsigned long key = crc32((unsigned char*)(keystring), strlen(keystring));
    
        /* Robert Jenkins' 32 bit Mix Function */
        key += (key << 12);
        key ^= (key >> 22);
        key += (key << 4);
        key ^= (key >> 9);
        key += (key << 10);
        key ^= (key >> 2);
        key += (key << 7);
        key ^= (key >> 12);
    
        /* Knuth's Multiplicative Method */
        key = (key >> 3) * 2654435761;
    
        return key % m->table_size;
    }
    
    /*
     * Return the integer of the location in data
     * to store the point to the item, or MAP_FULL.
     */
    int hashmap_hash(map_t in, char* key){
        int curr;
        int i;
    
        /* Cast the hashmap */
        hashmap_map* m = (hashmap_map *) in;
    
        /* If full, return immediately */
        if(m->size >= (m->table_size/2)) return MAP_FULL;
    
        /* Find the best index */
        curr = hashmap_hash_int(m, key);
    
        /* Linear probing */
        for(i = 0; i< MAX_CHAIN_LENGTH; i++){
            if(m->data[curr].in_use == 0)
                return curr;
    
            if(m->data[curr].in_use == 1 && (strcmp(m->data[curr].key,key)==0))
                return curr;
    
            curr = (curr + 1) % m->table_size;
        }
    
        return MAP_FULL;
    }
    
    /*
     * Doubles the size of the hashmap, and rehashes all the elements
     */
    int hashmap_rehash(map_t in){
        int i;
        int old_size;
        hashmap_element* curr;
    
        /* Setup the new elements */
        hashmap_map *m = (hashmap_map *) in;
        hashmap_element* temp = (hashmap_element *)
            calloc(2 * m->table_size, sizeof(hashmap_element));
        if(!temp) return MAP_OMEM;
    
        /* Update the array */
        curr = m->data;
        m->data = temp;
    
        /* Update the size */
        old_size = m->table_size;
        m->table_size = 2 * m->table_size;
        m->size = 0;
    
        /* Rehash the elements */
        for(i = 0; i < old_size; i++){
            int status;
    
            if (curr[i].in_use == 0)
                continue;
                
            status = hashmap_put(m, curr[i].key, curr[i].data);
            if (status != MAP_OK)
                return status;
        }
    
        free(curr);
    
        return MAP_OK;
    }
    
    /*
     * Add a pointer to the hashmap with some key
     */
    int hashmap_put(map_t in, char* key, any_t value){
        int index;
        hashmap_map* m;
    
        /* Cast the hashmap */
        m = (hashmap_map *) in;
    
        /* Find a place to put our value */
        index = hashmap_hash(in, key);
        while(index == MAP_FULL){
            if (hashmap_rehash(in) == MAP_OMEM) {
                return MAP_OMEM;
            }
            index = hashmap_hash(in, key);
        }
    
        /* Set the data */
        m->data[index].data = value;
        m->data[index].key = key;
        m->data[index].in_use = 1;
        m->size++; 
    
        return MAP_OK;
    }
    
    /*
     * Get your pointer out of the hashmap with a key
     */
    int hashmap_get(map_t in, char* key, any_t *arg){
        int curr;
        int i;
        hashmap_map* m;
    
        /* Cast the hashmap */
        m = (hashmap_map *) in;
    
        /* Find data location */
        curr = hashmap_hash_int(m, key);
    
        /* Linear probing, if necessary */
        for(i = 0; i<MAX_CHAIN_LENGTH; i++){
    
            int in_use = m->data[curr].in_use;
            if (in_use == 1){
                if (strcmp(m->data[curr].key,key)==0){
                    *arg = (m->data[curr].data);
                    return MAP_OK;
                }
            }
    
            curr = (curr + 1) % m->table_size;
        }
    
        *arg = NULL;
    
        /* Not found */
        return MAP_MISSING;
    }
    
    /*
     * Iterate the function parameter over each element in the hashmap.  The
     * additional any_t argument is passed to the function as its first
     * argument and the hashmap element is the second.
     */
    int hashmap_iterate(map_t in, PFany f, any_t item) {
        int i;
    
        /* Cast the hashmap */
        hashmap_map* m = (hashmap_map*) in;
    
        /* On empty hashmap, return immediately */
        if (hashmap_length(m) <= 0)
            return MAP_MISSING;    
    
        /* Linear probing */
        for(i = 0; i< m->table_size; i++)
            if(m->data[i].in_use != 0) {
                any_t data = (any_t) (m->data[i].data);
                int status = f(item, data);
                if (status != MAP_OK) {
                    return status;
                }
            }
    
        return MAP_OK;
    }
    
    /*
     * Remove an element with that key from the map
     */
    int hashmap_remove(map_t in, char* key){
        int i;
        int curr;
        hashmap_map* m;
    
        /* Cast the hashmap */
        m = (hashmap_map *) in;
    
        /* Find key */
        curr = hashmap_hash_int(m, key);
    
        /* Linear probing, if necessary */
        for(i = 0; i<MAX_CHAIN_LENGTH; i++){
    
            int in_use = m->data[curr].in_use;
            if (in_use == 1){
                if (strcmp(m->data[curr].key,key)==0){
                    /* Blank out the fields */
                    m->data[curr].in_use = 0;
                    m->data[curr].data = NULL;
                    m->data[curr].key = NULL;
    
                    /* Reduce the size */
                    m->size--;
                    return MAP_OK;
                }
            }
            curr = (curr + 1) % m->table_size;
        }
    
        /* Data not found */
        return MAP_MISSING;
    }
    
    /* Deallocate the hashmap */
    void hashmap_free(map_t in){
        hashmap_map* m = (hashmap_map*) in;
        free(m->data);
        free(m);
    }
    
    /* Return the length of the hashmap */
    int hashmap_length(map_t in){
        hashmap_map* m = (hashmap_map *) in;
        if(m != NULL) return m->size;
        else return 0;
    }
  • 相关阅读:
    前端开发一些必须知道的相关技术
    页面实现复制功能
    使用localstorage及js模版引擎 开发 m站设想
    jsonp 使用示例
    js 阻止事件冒泡
    html doctype 作用
    localstorage 使用
    跨域技术-jsonp
    mysql实现高效率随机取数据
    mysql主从同步报slave_sql_running:no的解决方案
  • 原文地址:https://www.cnblogs.com/passedbylove/p/11372436.html
Copyright © 2020-2023  润新知