• 剑指offer 树的基本操作:四种遍历方式


    前序遍历 递归版

    编程思想

    即借助系统栈,效率较低。二叉树的前序遍历规则:1. 访问根结点; 2. 遍历左子树; 3. 遍历右子树

    编程实现

    //树的定义
    struct TreeNode {
         int val;
         TreeNode *left;
         TreeNode *right;
         TreeNode(int x) : val(x), left(NULL), right(NULL) {}
    };
    class Solution {
    private:
        void rec(TreeNode* root,vector<int> &ret){
            if(root != nullptr){
                ret.push_back(root->val);
                rec(root->left,ret);
                rec(root->right,ret);
            }
        }
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> ret;
            rec(root,ret);
            return ret;
        }
    };

    编程总结

    常规方法,注意向量要用引用。


    前序遍历 迭代版

    编程思想

    使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有中序和后序的模版写法,形式很统一,方便于记忆。
    辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在,那么先将p加入栈中,然后将p的结点值加入结果res中,此时p指向其左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,将p指向栈顶结点的右子结点。

    编程实现

    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> res;
            stack<TreeNode*> s;
            TreeNode *p = root;
            while (!s.empty() || p) {
                if (p) {
                    s.push(p);
                    res.push_back(p->val);
                    p = p->left;
                } 
                else {
                    TreeNode *t = s.top(); 
                    s.pop();
                    p = t->right;
                }
            }
            return res;
        }
    };    

    题目总结

    在掌握规律的前提下,使用模板记忆。


    中序遍历 递归版

    编程思想

    即借助系统栈,效率较低。二叉树的前序遍历规则:1. 遍历左子树; 2. 访问根结点; 3. 遍历右子树

    编程实现

    class Solution {
    private:
        void rec(TreeNode* root,vector<int> &ret){
            if(root != NULL){            
                rec(root->left,ret);
                ret.push_back(root->val);
                rec(root->right,ret);
            }
        }
    public:
        vector<int> inorderTraversal(TreeNode* root) {
            vector<int> ret;
            rec(root,ret);
            return ret;
        }
    };

    题目总结

    常规。


    中序遍历 迭代版

    编程思想

    使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和后序的模版写法,形式很统一,方便于记忆。
    因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。
    辅助结点p初始化为根结点,while循环的条件是栈不为空或者辅助结点p不为空,在循环中首先判断如果辅助结点p存在;那么先将p加入栈中,将p指向栈顶结点的左子结点。否则如果p不存在的话,表明没有左子结点,我们取出栈顶结点,然后将p的结点值加入结果res中,此时p指向其右子结点。

    编程实现

    class Solution {
    public:
        vector<int> inorderTraversal(TreeNode* root) {
            vector<int> res;
            stack<TreeNode*> s;
            TreeNode *p = root;
            while (!s.empty() || p) {
                if (p) {
                    s.push(p);
                    p = p->left;
                } 
                else {
                    TreeNode *t = s.top(); 
                    s.pop();
                    res.push_back(t->val);
                    p = t->right;
                }
            }
            return res;
        }
    };    

    题目总结

    注意与前序遍历的区别和联系,因为中序遍历的顺序是左-根-右,故与前序不同的是把结点值加入结果res的步骤从if中移动到了else中。


    后序遍历 递归版

    编程思想

    即借助系统栈,效率较低。二叉树的前序遍历规则: 1. 遍历左子树;2. 遍历右子树;3. 访问根结点;

    编程实现

    class Solution {
    private:
        void rec(TreeNode* root,vector<int> &ret){
            if(root != NULL){            
                rec(root->left,ret);
                rec(root->right,ret);
                ret.push_back(root->val);           
            }
        }
    public:
        vector<int> postorderTraversal(TreeNode* root) {
            vector<int> ret;
            rec(root,ret);
            return ret;
        }
    };

    编程总结

    常规。


    后序遍历 迭代版

    编程思想

    使用了一个辅助结点p,这种写法其实可以看作是一个模版,对应的还有前序和中序的模版写法,形式很统一,方便于记忆。
    由于后序遍历的顺序是左-右-根,而前序遍历的顺序是根-左-右,二者其实还是很相近的,我们可以先在先序遍历的方法上做些小改动,使其遍历顺序变为根-右-左,然后翻转一下,就是左-右-根了。翻转的方法,是反向加入结果res,每次都在结果res的开头加入结点值,而改变先序遍历的顺序就只要改变一下入栈顺序,先左后右,这样出栈处理的时候就是先右后左了。一定要对比前序遍历记忆!!!

    拓展:当访问一个结点*p时,栈中结点恰好为*p结点的所有祖先。从栈底到栈底结点再加上*p结点,刚好构成从根节点到*p结点的一条路径。这一特性非常重要,如求根结点到某结点的路径;求两个结点的最近公共祖先;均可用这个思想。

    编程实现

    class Solution {
    public:
        vector<int> postorderTraversal(TreeNode* root) {
            vector<int> res;
            stack<TreeNode*> s;
            TreeNode *p = root;
            while (!s.empty() || p) {
                if (p) {
                    s.push(p);
                    res.insert(res.begin(), p->val);    //反向添加,而前序是正向添加
                    p = p->right;  //与前序对比
                } 
                else {
                    TreeNode *t = s.top(); 
                    s.pop();
                    p = t->left;
                }
            }
            return res;
        }
    };

    编程总结

    拓展思想很重要!!


    层次遍历 版本1

    编程思想

    进行常规层次遍历,需要借助一个队列。
    先将根节点入队,然后出队,访问该根结点,如果它有左子树,则将左子树根节点入队,形成下一层;如果它有右子树,则将右子树根结点入队,形成下一层。然后出队,访问该结点,如此反复,直至队列为空。看代码比较容易懂。
    补充:
    queue 的基本操作有:
    入队,如例:q.push(x); 将x 接到队列的末端。
    出队,如例:q.pop(); 弹出队列的第一个元素,注意,并不会返回被弹出元素的值。
    访问队首元素,如例:q.front(),即最早被压入队列的元素。
    访问队尾元素,如例:q.back(),即最后被压入队列的元素。
    判断队列空,如例:q.empty(),当队列空时,返回true。
    访问队列中的元素个数,如例:q.size()

    编程实现

    class Solution {
    public:
        vector<vector<int>> levelOrder(TreeNode* root) {
            
            vector<vector<int>>v;
            queue<TreeNode*>q;
            q.push(root);  //根节点入队
            if(root == NULL)  
                return v ;
            while(!q.empty()){  //队列不空
                vector<int>vv;
                queue<TreeNode*> next ;  //  建立第二个队列 用来存放下一层的结点
                while(!q.empty()){  //遍历当前层的结点  这层循环是核心 其他都是为了满足OJ输出
                    
                    TreeNode* tre = q.front() ;
                    vv.push_back(tre->val);  //访问该结点,为了满足输出要求,所以有点复杂,
                    q.pop();  //对头元素出队
                    if(tre->left!=NULL){  //它有左子树
                        next.push(tre->left);
                    }
                    if(tre->right!=NULL){  //它有右子树
                        next.push(tre->right);
                    }                
                }
                v.push_back(vv);
                q=next;  // // 遍历完后进入下一层 
            }
            return v;
        }
    };

    编程总结

    层次遍历往往要用到队列,要对队列的基本操作熟悉,注意二维向量的生成。


    层次遍历 版本2

    编程思想

    给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)。

    同版本一类似,只不过需要多一个栈,把每层返回的结点加入栈中,最后输出。

    编程实现

    class Solution {
    public:
        vector<vector<int>> levelOrderBottom(TreeNode* root) {
            vector<vector<int>>v;
            stack<vector<int>>s;
            queue<TreeNode*>q;
            q.push(root);  //根节点入队
            if(root == NULL)  
                return v ;
            while(!q.empty()){  //队列不空
                vector<int>vv;
                queue<TreeNode*> next ;  //  建立第二个队列 用来存放下一层的结点
                
                while(!q.empty()){  //遍历每层的结点  这层循环是核心 其他都是为了满足OJ输出
                    
                    TreeNode* tre = q.front() ;
                    vv.push_back(tre->val);  //访问该结点,为了满足输出要求,所以有点复杂,
                    q.pop();  //对头元素出队
                    if(tre->left!=NULL){  //它有左子树
                        next.push(tre->left);
                    }
                    if(tre->right!=NULL){  //它有右子树
                        next.push(tre->right);
                    }
                    
                }
                s.push(vv);  //将每层结点入栈
                //v.push_back(vv);
                q=next;  // // 遍历完后进入下一层 
            }
            while(!s.empty()){  //将每层结点倒序输出
                v.push_back(s.top());
                s.pop();
            }
            return v;
        }
    };

    编程总结

    注意其他数据结构的配合使用。

  • 相关阅读:
    禅道使用-升级
    Maven 的这 7 个问题你思考过没有?
    https及证书
    Linux下查看/管理当前登录用户及用户操作历史记录
    禅道的安装
    Linux添加/删除用户和用户组
    Spring注解@Component、@Repository、@Service、@Controller区别 .
    myeclipse,eclipse打开当前文件所在文件夹
    java开发常用工具
    Django环境搭建之安装mod_wsgi模块
  • 原文地址:https://www.cnblogs.com/parzulpan/p/11257376.html
Copyright © 2020-2023  润新知