给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 +
和 -
。对于数组中的任意一个整数,你都可以从 +
或 -
中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3 输出: 5 解释: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 一共有5种方法让最终目标和为3。
注意:
- 数组的长度不会超过20,并且数组中的值全为正数。
- 初始的数组的和不会超过1000。
- 保证返回的最终结果为32位整数。
//章节 - 队列和栈 //四、栈和深度优先搜索 //3.目标和 /* 算法思想: 使用递归,也就DFS,只是用的系统栈。我们从第一个数字,调用递归函数,在递归函数中,分别对目标值进行加上当前数字调用递归,和减去当前数字调用递归,这样会涵盖所有情况,并且当所有数字遍历完成后,我们看若目标值为0了,则结果res自增1, */ //算法实现: class Solution { public: int findTargetSumWays(vector<int>& nums, int S) { int res = 0; helper(nums, S, 0, res); return res; } void helper(vector<int>& nums, int S, int start, int& res) { if (start >= nums.size()) { if (S == 0) ++res; return; } helper(nums, S - nums[start], start + 1, res); helper(nums, S + nums[start], start + 1, res); } };