• 【keras】用tensorboard监视CNN每一层的输出



    from
    keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import Conv1D, MaxPooling1D import scipy.io as sio import matplotlib.pyplot as plt from keras.utils import np_utils import keras import numpy as np from keras import regularizers from keras.callbacks import TensorBoard from keras.utils import plot_model from keras import backend as K from os.path import exists, join from os import makedirs batch_sizes = 256 nb_class = 10 nb_epochs = 2 log_dir = './bgbv2_log_dir' if not exists(log_dir): makedirs(log_dir) # input image dimensions img_rows, img_cols = 1, 2048 ''' 第一步 准备数据 ''' # matlab文件名 准备数据 file_name = u'G:/GANCode/CSWU/12k drive end vps/trainset/D/D_dataset.mat' original_data = sio.loadmat(file_name) X_train = original_data['x_train'] Y_train = original_data['y_train'] X_test = original_data['x_test'] Y_test = original_data['y_test'] channel = 1 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], channel)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], channel)) input_shape = (X_train.shape[1], channel) # 标签打乱 permutation = np.random.permutation(Y_train.shape[0]) X_train = X_train[permutation, :, :] Y_train = Y_train[permutation] permutation = np.random.permutation(Y_test.shape[0]) X_test = X_test[permutation, :, :] Y_test = Y_test[permutation] X_train = X_train.astype('float32') # astype SET AS TYPE INTO X_test = X_test.astype('float32') #X_train = (X_train+1)/2 #X_test = (X_test+1)/2 print('x_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') X_meta = X_test.reshape((X_test.shape[0], X_test.shape[1])) kkkkk=0 # save class labels to disk to color data points in TensorBoard accordingly with open(join(log_dir, 'metadata.tsv'), 'w') as f: np.savetxt(f, Y_test[:200]) ''' 第三步 设置标签 one-hot ''' Y_test = np_utils.to_categorical(Y_test, nb_class) # Label Y_train = np_utils.to_categorical(Y_train, nb_class) ''' 第四步 网络model ''' model = Sequential() model.add(Conv1D(64, 11, activation='relu', input_shape=(2048, 1))) model.add(Conv1D(64, 11, activation='relu')) model.add(MaxPooling1D(3)) model.add(Conv1D(128, 11, activation='relu')) model.add(Conv1D(128, 11, activation='relu')) ''' model.add(GlobalAveragePooling1D()) model.add(Dropout(0.5)) ''' model.add(MaxPooling1D(3)) model.add(Dropout(0.25)) model.add(keras.layers.Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dense(100, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) embedding_layer_names = set(layer.name for layer in model.layers if layer.name.startswith('dense_')) # https://stackoverflow.com/questions/45265436/keras-save-image-embedding-of-the-mnist-data-set model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) callbacks = [keras.callbacks.TensorBoard( log_dir='bgbv2_log_dir', embeddings_layer_names=['dense_2'], #监视某一层,就要写某一层的名字,可以同时监视很多层,用上面的字典形式。 #embeddings_metadata='metadata.tsv', embeddings_freq=1, #histogram_freq=1, embeddings_data=X_test # 数据要和X_train保持一致。这里我用的是一维数据,(60000,2048,1)表示有6万个样本,每个样本有2048个长度,且每个样本有1个通道(1个传感器),换成多个通道的话,就要使用多个传感器的数据。 )] model.fit(X_train, Y_train, batch_size=batch_sizes, callbacks=callbacks, epochs=nb_epochs, verbose=1, validation_data=(X_test, Y_test)) xxasfs=1 # You can now launch tensorboard with `tensorboard --logdir=./logs` on your # command line and then go to http://localhost:6006/#projector to view the # embeddings # keras.callbacks.TensorBoard( # log_dir='./logs', # histogram_freq=0, # batch_size=32, # write_graph=True, # write_grads=False, # write_images=False, # embeddings_freq=0, # embeddings_layer_names=None, # embeddings_metadata=None, # embeddings_data=None, # update_freq='epoch')

    坑死我了。

    没有人教,自己琢磨了一天。

    下面就能清楚地看见我们的三维图啦~用来写paper和PPT都是极好的素材。

    PS:任何一个图层的输出:

    https://stackoverflow.com/questions/41711190/keras-how-to-get-the-output-of-each-layer

    参考1,keras Tensorboard官方说明

    https://keras.io/callbacks/#tensorboard

    from __future__ import print_function
    
    from os import makedirs
    from os.path import exists, join
    
    import keras
    from keras.callbacks import TensorBoard
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten
    from keras.layers import Conv2D, MaxPooling2D
    from keras import backend as K
    
    import numpy as np
    
    batch_size = 128
    num_classes = 10
    epochs = 12
    log_dir = './logs'
    
    if not exists(log_dir):
        makedirs(log_dir)
    
    # input image dimensions
    img_rows, img_cols = 28, 28
    
    # the data, split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    if K.image_data_format() == 'channels_first':
        x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
        x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
        input_shape = (1, img_rows, img_cols)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
        x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
        input_shape = (img_rows, img_cols, 1)
    
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
    
    # save class labels to disk to color data points in TensorBoard accordingly
    with open(join(log_dir, 'metadata.tsv'), 'w') as f:
        np.savetxt(f, y_test)
    
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    
    tensorboard = TensorBoard(batch_size=batch_size,
                              embeddings_freq=1,
                              embeddings_layer_names=['features'],
                              embeddings_metadata='metadata.tsv',
                              embeddings_data=x_test)
    
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3, 3),
                     activation='relu',
                     input_shape=input_shape))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu', name='features'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation='softmax'))
    
    model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=keras.optimizers.Adadelta(),
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train,
              batch_size=batch_size,
              callbacks=[tensorboard],
              epochs=epochs,
              verbose=1,
              validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])
    
    # You can now launch tensorboard with `tensorboard --logdir=./logs` on your
    # command line and then go to http://localhost:6006/#projector to view the
    # embeddings

    参考2,keras Mnist最后一层可视化。

    https://keras.io/examples/tensorboard_embeddings_mnist/

    参考3,IMDB影视评论最后一层可是化

    import keras
    from keras import layers
    from keras.datasets import imdb
    from keras.preprocessing import sequence
    max_features = 500 # 原文为2000
    max_len = 500
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
    x_train = sequence.pad_sequences(x_train, maxlen=max_len)
    x_test = sequence.pad_sequences(x_test, maxlen=max_len)
    
    KK=x_train[:100].astype("float32")
    MM=1
    
    model = keras.models.Sequential()
    model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
    model.add(layers.Conv1D(32, 7, activation='relu'))
    model.add(layers.MaxPooling1D(5))
    model.add(layers.Conv1D(32, 7, activation='relu'))
    model.add(layers.GlobalMaxPooling1D())
    model.add(layers.Dense(1))
    model.summary()
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
    callbacks = [keras.callbacks.TensorBoard(
                          log_dir='my_log_dir',
                          histogram_freq=1,
                          embeddings_freq=1,
                          embeddings_data=x_train[:100].astype("float32")
    )]
    history = model.fit(x_train, y_train,  epochs=20, batch_size=128, validation_split=0.2, callbacks=callbacks)


    #补充 https://codeday.me/bug/20180924/267508.html
  • 相关阅读:
    主要用到 DELPHI XE 10.2新增HASH函数
    个人使用Onenote和Evernote对比
    OneNote和Evernote的特征
    allure的HTML报告信息解疑
    记:ModuleNotFoundError: No module named 'pip'
    用例需注意的点
    Selenium Builder
    定位到元素后可进行的操作事件
    基本定位方法
    webdriver的基本操作
  • 原文地址:https://www.cnblogs.com/paprikatree/p/10769317.html
Copyright © 2020-2023  润新知