• ConcurrentHashMap源码分析


    简介

    线程安全的hash表,支持并发的更新和检索。功能和hashtable相同。此类在java.lang.util.concurrent并发包中。

    类图

    在这里插入图片描述
    此类 继承AbstractMap所以HashMap有的功能这里都会提供,实现了ConcurrentMap将会是并发安全的hash表。

    属性

    这里属性总体和HashMap相同,如果想了解HashMap可以去看我的另一篇文章。

        private static final int MAXIMUM_CAPACITY = 1 << 30; //最大槽位数量
        private static final int DEFAULT_CAPACITY = 16;	//默认槽位数量
        static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;	//最大可能的数组大小
        private static final int DEFAULT_CONCURRENCY_LEVEL = 16;	//默认并发级别
        private static final float LOAD_FACTOR = 0.75f;	//默认加载因子
        static final int TREEIFY_THRESHOLD = 8;	//树化阈值
        static final int UNTREEIFY_THRESHOLD = 6;	//反树化阈值
        static final int MIN_TREEIFY_CAPACITY = 64;	//树化前提 槽位不小于64
        private static final int MIN_TRANSFER_STRIDE = 16;
        private static int RESIZE_STAMP_BITS = 16;
        private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;//可以帮助调整大小的最大线程数
        private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    	/*
         * 节点特定的hash码
         */
        static final int MOVED     = -1; // forwarding节点的hash码 认为当前槽位正在被移动
        static final int TREEBIN   = -2; // 树的根节点hash码
        static final int RESERVED  = -3; // 预留的哈希码
        static final int HASH_BITS = 0x7fffffff; // 普通节点哈希的可用位
        static final int NCPU = Runtime.getRuntime().availableProcessors();//cpu的数量
        transient volatile Node<K,V>[] table;	//hash表、槽位
        private transient volatile Node<K,V>[] nextTable;
        private transient volatile long baseCount; //基本计数器值
        // 表初始化和大小调整控制。如果为负,则表正在初始化或调整大小:-1表示初始化,
        // 或者表示调整数量-(1 +活动的调整大小线程数)
        // 当table为null时,保留创建时的初始表大小(16)
        // 初始化后,保留下一次调整大小的阈值(16 - 16>>2 = 12),以在该值上调整表的大小。
        private transient volatile int sizeCtl;
        private transient volatile CounterCell[] counterCells; //表的计数格子,如果不是null就是2的n次方
        
    

    内部类

    static class Node<K,V> implements Map.Entry<K,V> {
    	final int hash;
    	final K key;
    	volatile V val;
    	volatile Node<K,V> next; //单链表
    }
    
    static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // 红黑树父节点
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // 删除后需要取消链接(这是个单链表 串联了所有树节点)
        boolean red;
    }
    

    构造方法

    // 使用默认的容量16 创建一个空的map
    public ConcurrentHashMap() {
    }
    // 创建一个能够容纳指定容量的空map
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }
    // 初始容量、加载因子、并发数
    public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   
            initialCapacity = concurrencyLevel;  //初始容量最少应为并发数
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }
    

    获取 get

     public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {  //如果第一个元素等于key 就返回
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)  //如果hash码小于0说明正在扩容或者是树
            	//因为这时能确定e为树节点 这里find是调用的树节点实现
                return (p = e.find(h, key)) != null ? p.val : null; 
            // 如果不是第一个节点,并且第一个节点不是树节点  就遍历链表找元素
            while ((e = e.next) != null) {
                if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
    

    移除 remove

    public V remove(Object key) {
        return replaceNode(key, null, null); //调用替换节点值方法
    }
    
    final V replaceNode(Object key, V value, Object cv) {
        int hash = spread(key.hashCode()); //计算hash
        for (Node<K,V>[] tab = table;;) { //自旋
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null) //如果表为空 或要删除的hash槽为空 返回null
                break;
            else if ((fh = f.hash) == MOVED) // 如果正在扩容迁移元素 当前线程帮助迁移
                tab = helpTransfer(tab, f);
            else { //没有特殊情况 就删除元素
                V oldVal = null;
                boolean validated = false;
                synchronized (f) {  // 分段锁 锁的一个槽位
                    if (tabAt(tab, i) == f) { //再次检查槽位第一个元素是否变化 变化了 自旋进入下次循环
                        if (fh >= 0) { //hash>=0 说明是链表
                            validated = true;
                            for (Node<K,V> e = f, pred = null;;) { //遍历链表查找元素
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { //找到了要删除元素
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||  //如果cv == null 或者
                                        (ev != null && cv.equals(ev))) { //cv和oldValue相同 就去删除数据
                                        oldVal = ev;
                                        if (value != null)  // 传入value不等于空 替换旧值
                                            e.val = value;
                                        //如果传入value为空 而且不是第一节点 就将前面节点指向后面节点
                                        else if (pred != null) 
                                            pred.next = e.next;
                                        else  //如果是第一节点  直接设置槽位第一节点为第二个节点
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) { //如果是树型结构
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) { //遍历找到要删除的节点
                                V pv = p.val;
                                if (cv == null || cv == pv || //如果cv==null 或者cv和oldValue相等 删除
                                    (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null) //传入值 不等于空 替换旧值
                                        p.val = value;
                                    else if (t.removeTreeNode(p)) //传入值等于空 将节点删除
                                        //removeTreeNode返回true 说明太小 应该取消树化 这句就直接设置桶位为链表
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) { //处理过了
                    if (oldVal != null) { //如果找到了元素 返回旧值
                    	//如果传入value为空 说明删除了元素 baseCount-1 
                    	//值得一提 看上面代码 value不为空 就会替换而不是删除
                        if (value == null) 
                            addCount(-1L, -1);
                        return oldVal; //返回旧值
                    }
                    break;
                }
            }
        }
        return null;
    }
    

    添加 put

    public V put(K key, V value) {
        return putVal(key, value, false);
    }
    // onlyIfAbsent: false已经存在的元素 替换值
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode()); //调整hash码
        int binCount = 0; //计数器
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0) //桶未初始化 先初始化
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //要插入桶位没有元素 将当前元素插入
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null))) //cas循环插入
                    break;                   // 添加到空槽时无锁
            }
            else if ((fh = f.hash) == MOVED) //如果要插入的槽位 正在迁移数据 当前线程帮忙迁移
                tab = helpTransfer(tab, f);
            else {	// 没有特殊情况 就上锁 添加数据
                V oldVal = null;
                synchronized (f) { //锁住槽位的第一个元素 这是分段锁
                    if (tabAt(tab, i) == f) { //再次确认第一个元素没有变化  有变化进入下次循环
                        if (fh >= 0) { //hashcode>=0说明是链表
                            binCount = 1; //记录循环次数
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { //找到了元素 要替换旧值
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) { //到最后还没找到元素 就插入最后
                                    pred.next = new Node<K,V>(hash, key, value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { //如果是树节点
                            Node<K,V> p;
                            binCount = 2;
                            // 调用树的put方法插入元素 如果有返回值 就替换旧值 返回空说明已经插入
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) { //不等于0说明已经插入 
                    if (binCount >= TREEIFY_THRESHOLD)  //计数器大于树形化阈值
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        //成功插入元素后 将 元素个数baseCount+1 
        addCount(1L, binCount);  
        return null; //返回null
    }
    

    初始化桶

    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) { //==0说明还未初始化
            //sizeCtl < 0说明其他线程正在初始化或者扩容 当前线程晚来了一步
            if ((sc = sizeCtl) < 0) //sizeCtl创建对象时 存的容量
                Thread.yield(); // 其他线程抢先初始化了 让出cpu
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //cas乐观锁
            //如果设置-1失败 其他线程抢先了 进入下次循环
            //下次循环 其他线程设置-1 进行初始化了 让出cpu
            //下次循环 如果已经初始化完毕 table数组>0 依旧退出循环
            //这是自旋锁 不成功就重试 直到不满足条件结束
                try {
                	//再次验证table是否初始化
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        //比如tab.length=16 那么sc=12 是下次扩容门槛
                        //写死了0.75倍 这是和HashMap不一样的地方
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc; //扩容后sizeCtl存的是下次要扩容的阈值
                }
                break;
            }
        }
        return tab;
    }
    

    迁移元素

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        // nextTab为空 说明还没开始迁移 数组扩容一倍
        if (nextTab == null) {            // initiating
            try {
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            // 改变了i的值 作用不清楚
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            // i 下标不合法 可能扩容完成了
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // 如果已经扩容结束 替换旧数组 设置新的扩容阈值
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                // 将扩容线程数 -1
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                	// 扩容完成后 两边相等  注意扩容时sc 高位存储扩容邮戳 低位存储扩容线程数+1
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 下面就是迁移元素
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }
    

    添加后计数和判断扩容

    // 添加过元素后调整baseCount大小
    // x 调整数, check >= 0 检查是否需要扩容
    private final void addCount(long x, int check) {
    	// CounterCell(以下简称as)是多线程并发操作时 
    	// 抢不到在baseCount操作权限时 就将数据放入这里
    	// b 存储baseCount, s存储总计数
        CounterCell[] as; long b, s;
        // 如果as有数据,或者as没数据但是我更新basecount失败了
        // 都说明此时并发大,那么当前线程不操作basecount了 直接放到CounterCell里面
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            // 下面是将要扩容的数据放到as
            // 如果 as 等于空,as长度<=0,数据要插入的位置等于null,或者插入又失败了
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                // 这次更新又失败了 说明并发依然很大 这个时候就去扩容 as 数组
                fullAddCount(x, uncontended);
                return;
            }
            // 不检查就退出了
            if (check <= 1)
                return;
            // 计算现在节点总数
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
    

    帮助扩容

    // 如果正在调整大小 帮助进行扩容
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        // 如果数组不为空、并且是ForwardingNode而且它的下一个table不为空 说明当前桶已经迁移完毕
        // 当前桶迁移完毕 去帮助其他桶迁移后 返回新数组
        // 当前桶没迁移完毕 返回原数组
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
    
  • 相关阅读:
    调用ajax的返回值,需要再ajax之外的函数体里return,以及同步异步问题
    JavaScript的进阶之路(三)引用类型之Object类型和Array类型
    JavaScript的进阶之路(二)函数简介,变量、作用域和内存问题
    JavaScript的进阶之路(一)
    mui.ajax()和asp.net sql服务器数据交互【3】最终版
    mui.ajax()和asp.net sql服务器数据交互【2】json数组和封装
    mui.ajax()和asp.net sql服务器数据交互【1】
    js和.net后台交互
    input文字垂直居中和按钮对齐问题,兼容IE8
    ios 搜索请求之没有报文返回 之 utf-8 之谜
  • 原文地址:https://www.cnblogs.com/paper-man/p/13284616.html
Copyright © 2020-2023  润新知