private int LevenshteinDistance(string s1,string s2,int maxValue) { if (s1 == null|| s1.Length == 0) return maxValue; if (s2 == null|| s2.Length == 0) return maxValue; if (s1.Trim() == s2.Trim()) return 0; // create two work vectors of integer distances int[] v0 = new int[s2.Length + 1]; int[] v1 = new int[s2.Length + 1]; int[] vtemp; // initialize v0 (the previous row of distances) // this row is A[0][i]: edit distance for an empty s // the distance is just the number of characters to delete from t for (int i = 0; i < v0.Length; i++) { v0[i] = i; } for (int i = 0; i < s1.Length; i++) { // calculate v1 (current row distances) from the previous row v0 // first element of v1 is A[i+1][0] // edit distance is delete (i+1) chars from s to match empty t v1[0] = i + 1; // use formula to fill in the rest of the row for (int j = 0; j < s2.Length; j++) { int cost = 1; if (s1.Substring(i, 1) == s2.Substring(j, 1)) { cost = 0; } v1[j + 1] = Math.Min( v1[j] + 1, // Cost of insertion Math.Min( v0[j + 1] + 1, // Cost of remove v0[j] + cost)); // Cost of substitution } // copy v1 (current row) to v0 (previous row) for next iteration //System.arraycopy(v1, 0, v0, 0, v0.length); // Flip references to current and previous row vtemp = v0; v0 = v1; v1 = vtemp; } return Math.Min(v0[s2.Length],maxValue); }