• Linux设备模型分析之kset(基于3.10.1内核)


    作者:刘昊昱 

    博客:http://blog.csdn.net/liuhaoyutz

    内核版本:3.10.1

     
    一、kset结构定义
    kset结构体定义在include/linux/kobject.h文件中,其内容如下:
    142/**
    143 * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem.
    144 *
    145 * A kset defines a group of kobjects.  They can be individually
    146 * different "types" but overall these kobjects all want to be grouped
    147 * together and operated on in the same manner.  ksets are used to
    148 * define the attribute callbacks and other common events that happen to
    149 * a kobject.
    150 *
    151 * @list: the list of all kobjects for this kset
    152 * @list_lock: a lock for iterating over the kobjects
    153 * @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
    154 * @uevent_ops: the set of uevent operations for this kset.  These are
    155 * called whenever a kobject has something happen to it so that the kset
    156 * can add new environment variables, or filter out the uevents if so
    157 * desired.
    158 */
    159struct kset {
    160    struct list_head list;
    161    spinlock_t list_lock;
    162    struct kobject kobj;
    163    const struct kset_uevent_ops *uevent_ops;
    164};


    从注释可以看出,kset是一组kobject的集合,这些kobject可以具有不同的“types”,下面来看kset的成员变量:
    list用于将该kset下的所有kobject链接成一个链表。
    list_lock是一个自旋锁,在遍历该kset下的kobject时用来加锁。
    kobj是代表该kset的一个kobject。
    uevent_ops是一组函数指针,当kset中的某个kobject状态发生变化需要通知用户空间时,就通过这些函数来完成。uevent_ops是struct kset_uevent_ops类型,该结构体定义在include/linux/kobject.h文件中,其定义如下:
    123struct kset_uevent_ops {
    124    int (* const filter)(struct kset *kset, struct kobject *kobj);
    125    const char *(* const name)(struct kset *kset, struct kobject *kobj);
    126    int (* const uevent)(struct kset *kset, struct kobject *kobj,
    127              struct kobj_uevent_env *env);
    128};


    关于kset_uevent_ops结构体中的成员函数的作用,我们后面再分析。
     
    二、kset的创建和注册
    要创建并注册一个kset,使用的是kset_create_and_add函数,该函数定义在lib/kobject.c文件中,其内容如下:
    827/**
    828 * kset_create_and_add - create a struct kset dynamically and add it to sysfs
    829 *
    830 * @name: the name for the kset
    831 * @uevent_ops: a struct kset_uevent_ops for the kset
    832 * @parent_kobj: the parent kobject of this kset, if any.
    833 *
    834 * This function creates a kset structure dynamically and registers it
    835 * with sysfs.  When you are finished with this structure, call
    836 * kset_unregister() and the structure will be dynamically freed when it
    837 * is no longer being used.
    838 *
    839 * If the kset was not able to be created, NULL will be returned.
    840 */
    841struct kset *kset_create_and_add(const char *name,
    842                 const struct kset_uevent_ops *uevent_ops,
    843                 struct kobject *parent_kobj)
    844{
    845    struct kset *kset;
    846    int error;
    847
    848    kset = kset_create(name, uevent_ops, parent_kobj);
    849    if (!kset)
    850        return NULL;
    851    error = kset_register(kset);
    852    if (error) {
    853        kfree(kset);
    854        return NULL;
    855    }
    856    return kset;
    857}


    828行,从注释可以看出,kset_create_and_add函数的作用是动态创建一个kset结构并把它注册到sysfs文件系统中。注意该函数的三个参数:
    name是kset的名字,它会被赋值给kset.kobj.name。
    uevent_ops是struct kset_uevent_ops变量,它会被赋值给kset.uevent_ops。
    parent_kobj是该kset的父kobject,它会被赋值给kset.kobj.parent。
    848行,调用kset_create函数动态创建kset结构并对其进行初始化,该函数定义在lib/kobject.c文件中,其内容如下:
    783/**
    784 * kset_create - create a struct kset dynamically
    785 *
    786 * @name: the name for the kset
    787 * @uevent_ops: a struct kset_uevent_ops for the kset
    788 * @parent_kobj: the parent kobject of this kset, if any.
    789 *
    790 * This function creates a kset structure dynamically.  This structure can
    791 * then be registered with the system and show up in sysfs with a call to
    792 * kset_register().  When you are finished with this structure, if
    793 * kset_register() has been called, call kset_unregister() and the
    794 * structure will be dynamically freed when it is no longer being used.
    795 *
    796 * If the kset was not able to be created, NULL will be returned.
    797 */
    798static struct kset *kset_create(const char *name,
    799                const struct kset_uevent_ops *uevent_ops,
    800                struct kobject *parent_kobj)
    801{
    802    struct kset *kset;
    803    int retval;
    804
    805    kset = kzalloc(sizeof(*kset), GFP_KERNEL);
    806    if (!kset)
    807        return NULL;
    808    retval = kobject_set_name(&kset->kobj, name);
    809    if (retval) {
    810        kfree(kset);
    811        return NULL;
    812    }
    813    kset->uevent_ops = uevent_ops;
    814    kset->kobj.parent = parent_kobj;
    815
    816    /*
    817     * The kobject of this kset will have a type of kset_ktype and belong to
    818     * no kset itself.  That way we can properly free it when it is
    819     * finished being used.
    820     */
    821    kset->kobj.ktype = &kset_ktype;
    822    kset->kobj.kset = NULL;
    823
    824    return kset;
    825}


    805行,为kset结构分配内存空间。
    808行,将name参数赋值给kset.kobj.name。它对应kset在sysfs文件系统中的目录名。
    813行,将uevent_ops赋值给kset->uevent_ops。
    814行,将parent_kobj 赋值给kset->kobj.parent。
    816-822行,由注释可以知道,kset.kobj.ktype被赋于一个kset_ktype类型,并且kset.kobj.kset为NULL,即该kset不属于任何其它kset。这样可以保证在不再继续使用该kset时可以正确的释放它。这里我们要来看一下kset_ktype的定义,它定义在lib/kobject.c文件中,其内容如下:
    778static struct kobj_type kset_ktype = {
    779    .sysfs_ops  = &kobj_sysfs_ops,
    780    .release = kset_release,
    781};


    kobj_sysfs_ops定义在lib/kobject.c文件中,其内容如下:
    708const struct sysfs_ops kobj_sysfs_ops = {
    709    .show   = kobj_attr_show,
    710    .store  = kobj_attr_store,
    711};


    结合上篇文章中对kobject的分析,我们可以得出如下结论:
    如果用户空间程序要对kset对应的sysfs文件系统下的属性文件进行读操作时,kobj_attr_show函数会被调用。
    如果用户空间程序要对kset对应的sysfs文件系统下的属性文件进行写操作时,
    kobj_attr_store函数会被调用。
    下面我们来看kobj_attr_show函数,它定义在lib/kobject.c文件中:
    683/* default kobject attribute operations */
    684static ssize_t kobj_attr_show(struct kobject *kobj, struct attribute *attr,
    685                  char *buf)
    686{
    687    struct kobj_attribute *kattr;
    688    ssize_t ret = -EIO;
    689
    690    kattr = container_of(attr, struct kobj_attribute, attr);
    691    if (kattr->show)
    692        ret = kattr->show(kobj, kattr, buf);
    693    return ret;
    694}


    注意683行的注释,这是默认的kobject attribute操作函数。在这函数中,通过container_of取得包含attr变量的struct kobj_attribute变量kattr,然后调用kattr->show()函数。
    kobj_attr_store函数与kobj_attr_show函数类似,同样定义在lib/kobject.c文件中:
    696static ssize_t kobj_attr_store(struct kobject *kobj, struct attribute *attr,
    697                   const char *buf, size_t count)
    698{
    699    struct kobj_attribute *kattr;
    700    ssize_t ret = -EIO;
    701
    702    kattr = container_of(attr, struct kobj_attribute, attr);
    703    if (kattr->store)
    704        ret = kattr->store(kobj, kattr, buf, count);
    705    return ret;
    706}


    在该函数中,通过container_of取得包含attr变量的struct kobj_attribute变量kattr,然后调用kattr->store()函数。
    这样,如果用户空间程序要对kset对应的sysfs文件系统下的属性文件进行读写操作时,就会转而调用包含相应attribute的kobj_attribute结构体的show/store函数。实际上这种用法是和宏__ATTR结合在一起使用的,后面我们会再分析。
    到此,kobject_create函数我们就分析完了,回到kset_create_and_add函数,
    851行,调用kset_register(kset)函数注册kset,该函数定义在lib/kobject.c文件中,其内容如下:
    713/**
    714 * kset_register - initialize and add a kset.
    715 * @k: kset.
    716 */
    717int kset_register(struct kset *k)
    718{
    719    int err;
    720
    721    if (!k)
    722        return -EINVAL;
    723
    724    kset_init(k);
    725    err = kobject_add_internal(&k->kobj);
    726    if (err)
    727        return err;
    728    kobject_uevent(&k->kobj, KOBJ_ADD);
    729    return 0;
    730}


    724行,首先对kset进行初始化。kset的初始化是通过调用kset_init函数完成的,该函数定义在lib/kobject.c文件中,其内容如下:
    672/**
    673 * kset_init - initialize a kset for use
    674 * @k: kset
    675 */
    676void kset_init(struct kset *k)
    677{
    678    kobject_init_internal(&k->kobj);
    679    INIT_LIST_HEAD(&k->list);
    680    spin_lock_init(&k->list_lock);
    681}


    可见,只是简单初始化kset.kobj,kset.list,和kset.list_lock。
    725行,将kset.kobj加入到kobject层次结构和sysfs文件系统中。
    728行,调用kobject_uevent(&k->kobj, KOBJ_ADD),通知用户空间添加了一个kobject,即kset.kobj。kobject_uevent函数定义在lib/kobject_uevent.c文件中,其内容如下:
    322/**
    323 * kobject_uevent - notify userspace by sending an uevent
    324 *
    325 * @action: action that is happening
    326 * @kobj: struct kobject that the action is happening to
    327 *
    328 * Returns 0 if kobject_uevent() is completed with success or the
    329 * corresponding error when it fails.
    330 */
    331int kobject_uevent(struct kobject *kobj, enum kobject_action action)
    332{
    333    return kobject_uevent_env(kobj, action, NULL);
    334}


    从注释可以看出,kobject_uevent函数的作用是通过发送一个uevent通知用户空间内核中发生了某些事情。至于发生了什么事情,由第二个参数action指定,action是enum kobject_action类型变量,定义在include/linux/kobject.h文件中,其内容如下:
     40/*
     41 * The actions here must match the index to the string array
     42 * in lib/kobject_uevent.c
     43 *
     44 * Do not add new actions here without checking with the driver-core
     45 * maintainers. Action strings are not meant to express subsystem
     46 * or device specific properties. In most cases you want to send a
     47 * kobject_uevent_env(kobj, KOBJ_CHANGE, env) with additional event
     48 * specific variables added to the event environment.
     49 */
     50enum kobject_action {
     51    KOBJ_ADD,
     52    KOBJ_REMOVE,
     53    KOBJ_CHANGE,
     54    KOBJ_MOVE,
     55    KOBJ_ONLINE,
     56    KOBJ_OFFLINE,
     57    KOBJ_MAX
     58};


    可见,一共有这7种事件可以通知用户空间。
    回到kobject_uevent函数,333行,调用kobject_uevent_env函数来发送uevent,该函数定义在lib/kobject_uevent.c文件中,其内容如下:
    121/**
    122 * kobject_uevent_env - send an uevent with environmental data
    123 *
    124 * @action: action that is happening
    125 * @kobj: struct kobject that the action is happening to
    126 * @envp_ext: pointer to environmental data
    127 *
    128 * Returns 0 if kobject_uevent_env() is completed with success or the
    129 * corresponding error when it fails.
    130 */
    131int kobject_uevent_env(struct kobject *kobj, enum kobject_action action,
    132               char *envp_ext[])
    133{
    134    struct kobj_uevent_env *env;
    135    const char *action_string = kobject_actions[action];
    136    const char *devpath = NULL;
    137    const char *subsystem;
    138    struct kobject *top_kobj;
    139    struct kset *kset;
    140    const struct kset_uevent_ops *uevent_ops;
    141    int i = 0;
    142    int retval = 0;
    143#ifdef CONFIG_NET
    144    struct uevent_sock *ue_sk;
    145#endif
    146
    147    pr_debug("kobject: '%s' (%p): %s
    ",
    148         kobject_name(kobj), kobj, __func__);
    149
    150    /* search the kset we belong to */
    151    top_kobj = kobj;
    152    while (!top_kobj->kset && top_kobj->parent)
    153        top_kobj = top_kobj->parent;
    154
    155    if (!top_kobj->kset) {
    156        pr_debug("kobject: '%s' (%p): %s: attempted to send uevent "
    157             "without kset!
    ", kobject_name(kobj), kobj,
    158             __func__);
    159        return -EINVAL;
    160    }
    161
    162    kset = top_kobj->kset;
    163    uevent_ops = kset->uevent_ops;
    164
    165    /* skip the event, if uevent_suppress is set*/
    166    if (kobj->uevent_suppress) {
    167        pr_debug("kobject: '%s' (%p): %s: uevent_suppress "
    168                 "caused the event to drop!
    ",
    169                 kobject_name(kobj), kobj, __func__);
    170        return 0;
    171    }
    172    /* skip the event, if the filter returns zero. */
    173    if (uevent_ops && uevent_ops->filter)
    174        if (!uevent_ops->filter(kset, kobj)) {
    175            pr_debug("kobject: '%s' (%p): %s: filter function "
    176                 "caused the event to drop!
    ",
    177                 kobject_name(kobj), kobj, __func__);
    178            return 0;
    179        }
    180
    181    /* originating subsystem */
    182    if (uevent_ops && uevent_ops->name)
    183        subsystem = uevent_ops->name(kset, kobj);
    184    else
    185        subsystem = kobject_name(&kset->kobj);
    186    if (!subsystem) {
    187        pr_debug("kobject: '%s' (%p): %s: unset subsystem caused the "
    188             "event to drop!
    ", kobject_name(kobj), kobj,
    189             __func__);
    190        return 0;
    191    }
    192
    193    /* environment buffer */
    194    env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
    195    if (!env)
    196        return -ENOMEM;
    197
    198    /* complete object path */
    199    devpath = kobject_get_path(kobj, GFP_KERNEL);
    200    if (!devpath) {
    201        retval = -ENOENT;
    202        goto exit;
    203    }
    204
    205    /* default keys */
    206    retval = add_uevent_var(env, "ACTION=%s", action_string);
    207    if (retval)
    208        goto exit;
    209    retval = add_uevent_var(env, "DEVPATH=%s", devpath);
    210    if (retval)
    211        goto exit;
    212    retval = add_uevent_var(env, "SUBSYSTEM=%s", subsystem);
    213    if (retval)
    214        goto exit;
    215
    216    /* keys passed in from the caller */
    217    if (envp_ext) {
    218        for (i = 0; envp_ext[i]; i++) {
    219            retval = add_uevent_var(env, "%s", envp_ext[i]);
    220            if (retval)
    221                goto exit;
    222        }
    223    }
    224
    225    /* let the kset specific function add its stuff */
    226    if (uevent_ops && uevent_ops->uevent) {
    227        retval = uevent_ops->uevent(kset, kobj, env);
    228        if (retval) {
    229            pr_debug("kobject: '%s' (%p): %s: uevent() returned "
    230                 "%d
    ", kobject_name(kobj), kobj,
    231                 __func__, retval);
    232            goto exit;
    233        }
    234    }
    235
    236    /*
    237     * Mark "add" and "remove" events in the object to ensure proper
    238     * events to userspace during automatic cleanup. If the object did
    239     * send an "add" event, "remove" will automatically generated by
    240     * the core, if not already done by the caller.
    241     */
    242    if (action == KOBJ_ADD)
    243        kobj->state_add_uevent_sent = 1;
    244    else if (action == KOBJ_REMOVE)
    245        kobj->state_remove_uevent_sent = 1;
    246
    247    mutex_lock(&uevent_sock_mutex);
    248    /* we will send an event, so request a new sequence number */
    249    retval = add_uevent_var(env, "SEQNUM=%llu", (unsigned long long)++uevent_seqnum);
    250    if (retval) {
    251        mutex_unlock(&uevent_sock_mutex);
    252        goto exit;
    253    }
    254
    255#if defined(CONFIG_NET)
    256    /* send netlink message */
    257    list_for_each_entry(ue_sk, &uevent_sock_list, list) {
    258        struct sock *uevent_sock = ue_sk->sk;
    259        struct sk_buff *skb;
    260        size_t len;
    261
    262        if (!netlink_has_listeners(uevent_sock, 1))
    263            continue;
    264
    265        /* allocate message with the maximum possible size */
    266        len = strlen(action_string) + strlen(devpath) + 2;
    267        skb = alloc_skb(len + env->buflen, GFP_KERNEL);
    268        if (skb) {
    269            char *scratch;
    270
    271            /* add header */
    272            scratch = skb_put(skb, len);
    273            sprintf(scratch, "%s@%s", action_string, devpath);
    274
    275            /* copy keys to our continuous event payload buffer */
    276            for (i = 0; i < env->envp_idx; i++) {
    277                len = strlen(env->envp[i]) + 1;
    278                scratch = skb_put(skb, len);
    279                strcpy(scratch, env->envp[i]);
    280            }
    281
    282            NETLINK_CB(skb).dst_group = 1;
    283            retval = netlink_broadcast_filtered(uevent_sock, skb,
    284                                0, 1, GFP_KERNEL,
    285                                kobj_bcast_filter,
    286                                kobj);
    287            /* ENOBUFS should be handled in userspace */
    288            if (retval == -ENOBUFS || retval == -ESRCH)
    289                retval = 0;
    290        } else
    291            retval = -ENOMEM;
    292    }
    293#endif
    294    mutex_unlock(&uevent_sock_mutex);
    295
    296    /* call uevent_helper, usually only enabled during early boot */
    297    if (uevent_helper[0] && !kobj_usermode_filter(kobj)) {
    298        char *argv [3];
    299
    300        argv [0] = uevent_helper;
    301        argv [1] = (char *)subsystem;
    302        argv [2] = NULL;
    303        retval = add_uevent_var(env, "HOME=/");
    304        if (retval)
    305            goto exit;
    306        retval = add_uevent_var(env,
    307                    "PATH=/sbin:/bin:/usr/sbin:/usr/bin");
    308        if (retval)
    309            goto exit;
    310
    311        retval = call_usermodehelper(argv[0], argv,
    312                         env->envp, UMH_WAIT_EXEC);
    313    }
    314
    315exit:
    316    kfree(devpath);
    317    kfree(env);
    318    return retval;
    319}


    122行,从注释可以看出,kobject_uevent_env函数的作用是发送带有环境变量数据的uevent。
    150-160行,查找kobject所属的kset,如果这个kobject没有所属的kset,则看这个kobject.parent有没有所属的kset,如果还没有,继续沿着kobject层次结构树向上查找,直到找到一个具有所属kset的祖先kobject,如果确实没有找到,则出错退出。所以当前kobject的层次结构树中,必须有一个具有所属的kset。因为对事件的处理函数包含在kobject.kset.uevent_ops中,要处理事件,就必须找到上层一个不为空的kset。
    值得注意的是,在创建kset的过程中,kset_create_and_add->kset_create,在kset_create函数中,将kset.kobj.kset设置为NULL,所以kset.kobj本身没有所属的kset,但是同样在kset_create函数中,kset.kobj.parent设置为parent_kobj,所以kset.kobj必然通过其上层祖先查找kset。
    162行,取得相应的kset。
    163行,将kset.uevent_ops赋值给uevent_ops变量。
    165-171行,如果kobj->uevent_suppress被设置为1,则不发送uevent,退出。
    172-179行,如果uevent_ops->filter(kset, kobj)返回值为0,说明kobj希望发送的uevent被顶层kset过滤掉了,不再发送。
    181-191行,通过uevent_ops->name函数取得子系统名,如果uevent_ops->name为NULL,则使用kset.kobj.name做为子系统名。事实上,一个kset就是一个所谓的“subsystem”。
    194行,分配struct kobj_uevent_env变量空间给env,该结构体用来保存环境变量,它定义在include/linux/kobject.h文件中,其内容如下:
    116struct kobj_uevent_env {
    117    char *envp[UEVENT_NUM_ENVP];
    118    int envp_idx;
    119    char buf[UEVENT_BUFFER_SIZE];
    120    int buflen;
    121};
    199行,调用kobject_get_path取得kobject的绝对路径。
    205-214行,调用add_uevent_var函数将ACTION、DEVPATH、SUBSYSTEM三个默认环境变量添加到env中。add_uevent_var函数定义在lib/kobject_uevent.c文件中,其作用是“add key value string to the environment buffer”。
    217-223行,如果调用kobject_uevent_env函数时,通过第三个参数envp_ext传递进来了其它相关环境变量,也通过add_uevent_var函数添加到env中。
    225-234行,如果uevent_ops->uevent不为空,则调用uevent_ops->uevent,kset可以通过该函数完成自己特定的功能。
    236-246行,如果action是KOBJ_ADD,则设置kobj->state_add_uevent_sent为1。如果action是KOBJ_REMOVE,则设置kobj->state_remove_uevent_sent为1。其作用注释中说的很清楚“Mark "add" and "remove" events in the object to ensure proper events to userspace during automatic cleanup. If the object did send an "add" event, "remove" will automatically generated by the core, if not already done by the caller.”。
    249行,将SEQNUM环境变量添加到env中。
    kobject_uevent_env函数剩下的部分,用来和用户空间进程进行交互(或者在内核空间启动执行一个用户空间程序)。在Linux中,有两种方式完成这种交互,一个是代码中由CONFIG_NET宏包含的部分,即255-293行,这部分代码通过udev的方式向用户空间广播当前kset对象中的uevent事件。另外一种方式是在内核空间启动一个用户空间进程/sbin/hotplug,通过给该进程传递内核设定的环境变量的方式来通知用户空间kset对象中的uevent事件,即代码中296-312行。
    热插拔(hotplug)是指当有设备插入或拨出系统时,内核可以检测到这种状态变化,并通知用户空间加载或移除该设备对应的驱动程序模块。在Linux系统上内核有两种机制可以通知用户空间执行加载或移除操作,一种是udev,另一种是/sbin/hotplug,在Linux发展的早期,只有/sbin/hotplug,它的幕后推手是内核中的call_usermodehelper函数,它能从内核空间启动一个用户空间程序。随着内核的发展,出现了udev机制并逐渐取代了/sbin/hotplug。udev的实现基于内核中的网络机制,它通过创建标准的socket接口来监听来自内核的网络广播包,并对接收到的包进行分析处理。
    至此,kobject_uevent_env函数我们就分析完了,同时,kobject_uevent、kset_register、kset_create_and_add函数也分析完了,我们了解了kset的创建和注册过程。
  • 相关阅读:
    There is an overlap in the region chain修复
    There is an overlap in the region chain
    region xx not deployed on any region server
    python 中的re模块,正则表达式
    TCP粘包问题解析与解决
    yield from
    Git push提交时报错Permission denied(publickey)...Please make sure you have the correct access rights and the repository exists.
    mysql 中Varchar 与char的区别
    Mysql 字符集及排序规则
    请实现一个装饰器,限制该函数被调用的频率,如10秒一次
  • 原文地址:https://www.cnblogs.com/pangblog/p/3395300.html
Copyright © 2020-2023  润新知