首先说明一点,此篇blog解决的问题是就下面的数据如何应用mahout中的贝叶斯算法?(这个问题是在上篇(。。。完结篇)blog最后留的问题,如果想直接使用该工具,可以在mahout贝叶斯算法拓展下载):
0.2 0.3 0.4:1 0.32 0.43 0.45:1 0.23 0.33 0.54:1 2.4 2.5 2.6:2 2.3 2.2 2.1:2 5.4 7.2 7.2:3 5.6 7 6:3 5.8 7.1 6.3:3 6 6 5.4:3 11 12 13:4
前篇blog上面的数据在最后的空格使用冒号代替(因为样本向量和标识的解析需要不同的解析符号,同一个的话解析就会出问题)。关于上面的数据其实就是说样本[0.2,0.3,0.4]被贴上了标签1,其他依次类推,然后这个作为训练数据训练贝叶斯模型,最后通过上面的数据进行分类建议模型的准确度。
处理的过程大概可以分为7个步骤:1.转换原始数据到贝叶斯算法可以使用的数据格式;2. 把所有的标识转换为数值型格式;3.对原始数据进行处理获得贝叶斯模型的属性参数值1;4.对原始数据进行处理获得贝叶斯模型的属性参数值2;5.根据3、4的结果把贝叶斯模型写入文件;6.对原始数据进行自分类;7.根据6的结果对贝叶斯模型进行评价。
下面分别介绍:
1. 数据格式转换:
代码如下:
package mahout.fansy.bayes.transform; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.hadoop.util.ToolRunner; import org.apache.mahout.common.AbstractJob; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.math.NamedVector; import org.apache.mahout.math.RandomAccessSparseVector; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class TFText2VectorWritable extends AbstractJob { /** * 处理把 * [2.1,3.2,1.2:a * 2.1,3.2,1.3:b] * 这样的数据转换为 key:new Text(a),value:new VectorWritable(2.1,3.2,1.2:a) 的序列数据 * @param args * @throws Exception */ public static void main(String[] args) throws Exception { ToolRunner.run(new Configuration(), new TFText2VectorWritable(),args); } @Override public int run(String[] args) throws Exception { addInputOption(); addOutputOption(); // 增加向量之间的分隔符,默认为逗号; addOption("splitCharacterVector","scv", "Vector split character,default is ','", ","); // 增加向量和标示的分隔符,默认为冒号; addOption("splitCharacterLabel","scl", "Vector and Label split character,default is ':'", ":"); if (parseArguments(args) == null) { return -1; } Path input = getInputPath(); Path output = getOutputPath(); String scv=getOption("splitCharacterVector"); String scl=getOption("splitCharacterLabel"); Configuration conf=getConf(); // FileSystem.get(output.toUri(), conf).deleteOnExit(output);//如果输出存在,删除输出 HadoopUtil.delete(conf, output); conf.set("SCV", scv); conf.set("SCL", scl); Job job=new Job(conf); job.setJobName("transform text to vector by input:"+input.getName()); job.setJarByClass(TFText2VectorWritable.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setMapperClass(TFMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(VectorWritable.class); job.setNumReduceTasks(0); job.setOutputKeyClass(Text.class); job.setOutputValueClass(VectorWritable.class); TextInputFormat.setInputPaths(job, input); SequenceFileOutputFormat.setOutputPath(job, output); if(job.waitForCompletion(true)){ return 0; } return -1; } public static class TFMapper extends Mapper<LongWritable,Text,Text,VectorWritable>{ private String SCV; private String SCL; /** * 初始化分隔符参数 */ @Override public void setup(Context ctx){ SCV=ctx.getConfiguration().get("SCV"); SCL=ctx.getConfiguration().get("SCL"); } /** * 解析字符串,并输出 * @throws InterruptedException * @throws IOException */ @Override public void map(LongWritable key,Text value,Context ctx) throws IOException, InterruptedException{ String[] valueStr=value.toString().split(SCL); if(valueStr.length!=2){ return; // 没有两个说明解析错误,退出 } String name=valueStr[1]; String[] vector=valueStr[0].split(SCV); Vector v=new RandomAccessSparseVector(vector.length); for(int i=0;i<vector.length;i++){ double item=0; try{ item=Double.parseDouble(vector[i]); }catch(Exception e){ return; // 如果不可以转换,说明输入数据有问题 } v.setQuick(i, item); } NamedVector nv=new NamedVector(v,name); VectorWritable vw=new VectorWritable(nv); ctx.write(new Text(name), vw); } } }
上面的代码只使用了Mapper对数据进行处理即可,把原始数据的Text格式使用分隔符进行解析输出<Text,VectorWritable>对应<标识,样本向量>,贝叶斯算法处理的数据格式是VectorWritable的,所以要进行转换。其中的解析符号是根据传入的参数进行设置的。如果要单独运行该类,传入的参数如下:
usage: <command> [Generic Options] [Job-Specific Options] Generic Options: -archives <paths> comma separated archives to be unarchived on the compute machines. -conf <configuration file> specify an application configuration file -D <property=value> use value for given property -files <paths> comma separated files to be copied to the map reduce cluster -fs <local|namenode:port> specify a namenode -jt <local|jobtracker:port> specify a job tracker -libjars <paths> comma separated jar files to include in the classpath. -tokenCacheFile <tokensFile> name of the file with the tokens Job-Specific Options: --input (-i) input Path to job input directory. --output (-o) output The directory pathname for output. --splitCharacterVector (-scv) splitCharacterVector Vector split character,default is ',' --splitCharacterLabel (-scl) splitCharacterLabel Vector and Label split character,default is ':' --help (-h) Print out help --tempDir tempDir Intermediate output directory --startPhase startPhase First phase to run --endPhase endPhase Last phase to run
其中-scv和-scl参数是自己加的,其他参考mahout中的AbstractJob的默认设置;
2.转换标识
这一步的主要操作是把输入文件的所有标识全部读取出来,然后进行转换,转换为数值型,代码如下:
package mahout.fansy.bayes; import java.io.IOException; import java.util.Collection; import java.util.HashSet; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.mahout.common.Pair; import org.apache.mahout.common.iterator.sequencefile.PathFilters; import org.apache.mahout.common.iterator.sequencefile.PathType; import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable; import com.google.common.io.Closeables; public class WriteIndexLabel { /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { String inputPath="hdfs://ubuntu:9000/user/mahout/output_bayes/part-m-00000"; String labPath="hdfs://ubuntu:9000/user/mahout/output_bayes/index.bin"; Configuration conf=new Configuration(); conf.set("mapred.job.tracker", "ubuntu:9001"); long t=writeLabelIndex(inputPath,labPath,conf); System.out.println(t); } /** * 从输入文件中读出全部标识,并加以转换,然后写入文件 * @param inputPath * @param labPath * @param conf * @return * @throws IOException */ public static long writeLabelIndex(String inputPath,String labPath,Configuration conf) throws IOException{ long labelSize=0; Path p=new Path(inputPath); Path lPath=new Path(labPath); SequenceFileDirIterable<Text, IntWritable> iterable = new SequenceFileDirIterable<Text, IntWritable>(p, PathType.LIST, PathFilters.logsCRCFilter(), conf); labelSize = writeLabel(conf, lPath, iterable); return labelSize; } /** * 把数字和标识的映射写入文件 * @param conf * @param indexPath * @param labels * @return * @throws IOException */ public static long writeLabel(Configuration conf,Path indexPath,Iterable<Pair<Text,IntWritable>> labels) throws IOException{ FileSystem fs = FileSystem.get(indexPath.toUri(), conf); SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, indexPath, Text.class, IntWritable.class); Collection<String> seen = new HashSet<String>(); int i = 0; try { for (Object label : labels) { String theLabel = ((Pair<?,?>) label).getFirst().toString(); if (!seen.contains(theLabel)) { writer.append(new Text(theLabel), new IntWritable(i++)); seen.add(theLabel); } } } finally { Closeables.closeQuietly(writer); } System.out.println("labels number is : "+i); return i; } }
这一步要返回一个参数,即标识的一共个数,用于后面的处理需要。
3. 获得贝叶斯模型属性值1:
这个相当于 TrainNaiveBayesJob的第一个prepareJob,本来是可以直接使用mahout中的mapper和reducer的,但是其中mapper关于key的解析和我使用的不同,所以解析也不同,所以这一步骤的mapper可以认为就是TrainNaiveBayesJob中第一个prepareJob的mapper,只是做了很少的修改。此步骤的代码如下:
package mahout.fansy.bayes; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.hadoop.util.ToolRunner; import org.apache.mahout.classifier.naivebayes.BayesUtils; import org.apache.mahout.common.AbstractJob; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.common.mapreduce.VectorSumReducer; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.math.map.OpenObjectIntHashMap; /** * 贝叶斯算法第一个job任务相当于 TrainNaiveBayesJob的第一个prepareJob * 只用修改Mapper即可,Reducer还用原来的 * @author Administrator * */ public class BayesJob1 extends AbstractJob { /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { ToolRunner.run(new Configuration(), new BayesJob1(),args); } @Override public int run(String[] args) throws Exception { addInputOption(); addOutputOption(); addOption("labelIndex","li", "The path to store the label index in"); if (parseArguments(args) == null) { return -1; } Path input = getInputPath(); Path output = getOutputPath(); String labelPath=getOption("labelIndex"); Configuration conf=getConf(); HadoopUtil.cacheFiles(new Path(labelPath), getConf()); HadoopUtil.delete(conf, output); Job job=new Job(conf); job.setJobName("job1 get scoreFetureAndLabel by input:"+input.getName()); job.setJarByClass(BayesJob1.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setMapperClass(BJMapper.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(VectorWritable.class); job.setCombinerClass(VectorSumReducer.class); job.setReducerClass(VectorSumReducer.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(VectorWritable.class); SequenceFileInputFormat.setInputPaths(job, input); SequenceFileOutputFormat.setOutputPath(job, output); if(job.waitForCompletion(true)){ return 0; } return -1; } /** * 自定义Mapper,只是解析的地方有改动而已 * @author Administrator * */ public static class BJMapper extends Mapper<Text, VectorWritable, IntWritable, VectorWritable>{ public enum Counter { SKIPPED_INSTANCES } private OpenObjectIntHashMap<String> labelIndex; @Override protected void setup(Context ctx) throws IOException, InterruptedException { super.setup(ctx); labelIndex = BayesUtils.readIndexFromCache(ctx.getConfiguration()); // } @Override protected void map(Text labelText, VectorWritable instance, Context ctx) throws IOException, InterruptedException { String label = labelText.toString(); if (labelIndex.containsKey(label)) { ctx.write(new IntWritable(labelIndex.get(label)), instance); } else { ctx.getCounter(Counter.SKIPPED_INSTANCES).increment(1); } } } }
如果要单独使用此类,可以参考下面的调用方式:
usage: <command> [Generic Options] [Job-Specific Options] Generic Options: -archives <paths> comma separated archives to be unarchived on the compute machines. -conf <configuration file> specify an application configuration file -D <property=value> use value for given property -files <paths> comma separated files to be copied to the map reduce cluster -fs <local|namenode:port> specify a namenode -jt <local|jobtracker:port> specify a job tracker -libjars <paths> comma separated jar files to include in the classpath. -tokenCacheFile <tokensFile> name of the file with the tokens Job-Specific Options: --input (-i) input Path to job input directory. --output (-o) output The directory pathname for output. --labelIndex (-li) labelIndex The path to store the label index in --help (-h) Print out help --tempDir tempDir Intermediate output directory --startPhase startPhase First phase to run --endPhase endPhase Last phase to run
其中的-li参数是自己加的,其实就是第2步骤中求得的标识的总个数,其他参考AbstractJob默认参数。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990