• POJ 3415 Max Sum of Max-K-sub-sequence (线段树+dp思想)


     

     

    Max Sum of Max-K-sub-sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5084    Accepted Submission(s): 1842

    Problem Description
    Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
    Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
     
    Input
    The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. 
    Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
     
    Sample Input
    4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
     
    Sample Output
    7 1 3 7 1 3 7 6 2 -1 1 1
     
    Author
    shǎ崽@HDU
     
    Source
     
    Recommend
    lcy
     
     

    题目大意:T 组数据,求 n 个数 连续子串的最大和是多少,子串要求长度不超过 k,以及这是个环形,如果多解,满足起点be最小,其次终点en最小

    解题思路:枚举每个起点be,终点en一定是在 be<=en<=be+k-1 这个范围内,所以求这个范围内的连续最长和即可,可以用 sum[en] -sum[be-1] ,其中sum[x]表示前x个数的和,所以即选出 be<=en<=be+k-1这个范围内最大sum[i],用线段树过了,但是rmq算法超时,郁闷!


    线段树算法,AC

    #include <iostream>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    
    const int maxn=200010;
    int d[maxn],sum[maxn],n,k,mx,mn;
    
    struct node{
    	int l,r,minc,maxc;
    }a[4*maxn];
    
    void input(){
    	scanf("%d%d",&n,&k);
    	for(int i=1;i<=n;i++){
    		scanf("%d",&d[i]);
    		d[i+n]=d[i];
    	}
    	sum[0]=0;
    	for(int i=1;i<=2*n;i++) sum[i]=sum[i-1]+d[i];
    }
    
    void build(int l,int r,int k){
    	a[k].l=l;
    	a[k].r=r;
    	if(l<r){
    		int mid=(l+r)/2;
    		build(l,mid,2*k);
    		build(mid+1,r,2*k+1);
    		a[k].maxc=max(a[2*k].maxc,a[2*k+1].maxc);
    		a[k].minc=min(a[2*k].minc,a[2*k+1].minc);
    	}else{
    		a[k].maxc=sum[l];
    		a[k].minc=sum[l];
    	}
    }
    
    void query(int l,int r,int k){
    	if(l<=a[k].l && a[k].r<=r){
    		//cout<<a[k].maxc<<" "<<a[k].minc<<endl;
    		mx=max(mx,a[k].maxc);
    		mn=min(mn,a[k].minc);
    	}else{
    		int mid=(a[k].l+a[k].r)/2;
    		if(r<=mid) query(l,r,2*k);
    		else if(l>=mid+1) query(l,r,2*k+1);
    		else{
    			query(l,mid,2*k);
    			query(mid+1,r,2*k+1);
    		}
    	}
    }
    
    void computing(){
    	build(0,2*n,1);
    	int ans=-(1<<30),be=1,en=1;
        for(int i=1;i<=n;i++){
        	mx=-(1<<30);
    		query(i,i+k-1,1);
            if(mx-sum[i-1]>ans){
                ans=mx-sum[i-1];
                be=i;
            }
        }
        for(int i=be;i<=be+k-1;i++){
            if(sum[i]-sum[be-1]==ans){
                en=i;
                break;
            } 
        }
        printf("%d %d %d
    ",ans,be>n?be-n:be,en>n?en-n:en);
    }
    
    int main(){
    	int t;
    	scanf("%d",&t);
    	while(t-- >0){
    		input();
    		computing();
    	}
    	return 0;
    }

    rmq算法,超时,郁闷中
    #include <iostream>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    
    const int maxn=300005*2;
    int maxsum[maxn][20],minsum[maxn][20],flog[maxn],d[maxn],sum[maxn],n,k;
    
    void ini(){
        int r=2,cnt=0;
        for(int i=1;i<maxn;i++){
            if(i<r) flog[i]=cnt;
            else{
                flog[i]=++cnt;
                r=r<<1;
            }
        }
    }
    
    void input(){
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++){
            scanf("%d",&d[i]);
            d[i+n]=d[i];
        }
    }
    
    void getrmq(){
        for(int i=1;i<=2*n;i++){
            sum[i]=sum[i-1]+d[i];
            maxsum[i][0]=sum[i];
            minsum[i][0]=sum[i];    
        }
        for(int j=1;j<=flog[2*n];j++)
        for(int i=1;i<=2*n;i++){
            if(i+(1<<j)-1<=2*n){
                maxsum[i][j]=max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
                minsum[i][j]=min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
            }
        }
    }
    
    void computing(){
        getrmq();
        int ans=-(1<<30),be=1,en=1,l,r,x,tmp;
        for(int i=1;i<=n;i++){
            l=i,r=i-1+k,x=flog[r-l+1];
            tmp=max(maxsum[l][x],maxsum[r-(1<<x)+1][x]);
            if(tmp-sum[i-1]>ans){
                ans=tmp-sum[i-1];
                be=i;
            }
        }
        for(int i=be;i<=be+k-1;i++){
            if(sum[i]-sum[be-1]==ans){
                en=i;
                break;
            } 
        }
        printf("%d %d %d
    ",ans,be>n?be-n:be,en>n?en-n:en);
    }
    
    int main(){
        ini();
        int t;
        scanf("%d",&t);
        while(t-- >0){
            input();
            computing();
        }
        return 0;
    }



  • 相关阅读:
    AJAX MANAGER
    关闭IE浏览器的自动RSS阅读功能
    WCF REST Configuration for ASP.NET AJAX and plain REST Services
    jquery, json与ashx的完美结合
    ASP.NET 页面中的 ValidateRequest属性
    ASP.NET中的healthMonitoring
    GZip Compress SoapExtension
    ASP.NET MVC : UrlHelper
    Microsoft Ajax Content Delivery Network
    ASP.NET: TextBox控件如果设置为ReadOnly则PostBack之后可能丢失数据的问题
  • 原文地址:https://www.cnblogs.com/pangblog/p/3304011.html
Copyright © 2020-2023  润新知