一 multiprocessing模块介绍
python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。
multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。
二 Process类的介绍
创建进程的类:
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调: 1. 需要使用关键字的方式来指定参数 2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
参数介绍:
1 group参数未使用,值始终为None 2 3 target表示调用对象,即子进程要执行的任务 4 5 args表示调用对象的位置参数元组,args=(1,2,'egon',) 6 7 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18} 8 9 name为子进程的名称
方法介绍:
1 p.start():启动进程,并调用该子进程中的p.run() 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 3 4 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 5 p.is_alive():如果p仍然运行,返回True 6 7 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
属性介绍:
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2
3 p.name:进程的名称
4
5 p.pid:进程的pid
6
7 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
8
9 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
三 Process类的使用
注意:在windows中Process()必须放到# if __name__ == '__main__':下
1 Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module. 2 If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources). 3 This is the reason for hiding calls to Process() inside 4 5 if __name__ == "__main__" 6 since statements inside this if-statement will not get called upon import. 7 由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。 8 如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。 9 这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。
创建并开启子进程的两种方式
1 #开进程的方法一: 2 import time 3 import random 4 from multiprocessing import Process 5 def piao(name): 6 print('%s piaoing' %name) 7 time.sleep(random.randrange(1,5)) 8 print('%s piao end' %name) 9 10 11 12 p1=Process(target=piao,args=('egon',)) #必须加,号 13 p2=Process(target=piao,args=('alex',)) 14 p3=Process(target=piao,args=('wupeqi',)) 15 p4=Process(target=piao,args=('yuanhao',)) 16 17 p1.start() 18 p2.start() 19 p3.start() 20 p4.start() 21 print('主线程')
1 #开进程的方法二: 2 import time 3 import random 4 from multiprocessing import Process 5 6 7 class Piao(Process): 8 def __init__(self,name): 9 super().__init__() 10 self.name=name 11 def run(self): 12 print('%s piaoing' %self.name) 13 14 time.sleep(random.randrange(1,5)) 15 print('%s piao end' %self.name) 16 17 p1=Piao('egon') 18 p2=Piao('alex') 19 p3=Piao('wupeiqi') 20 p4=Piao('yuanhao') 21 22 p1.start() #start会自动调用run 23 p2.start() 24 p3.start() 25 p4.start() 26 print('主线程')
进程直接的内存空间是隔离的
1 from multiprocessing import Process 2 n=100 #在windows系统中应该把全局变量定义在if __name__ == '__main__'之上就可以了 3 def work(): 4 global n 5 n=0 6 print('子进程内: ',n) 7 8 9 if __name__ == '__main__': 10 p=Process(target=work) 11 p.start() 12 print('主进程内: ',n)
1 from socket import * 2 from multiprocessing import Process 3 4 server=socket(AF_INET,SOCK_STREAM) 5 server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) 6 server.bind(('127.0.0.1',8080)) 7 server.listen(5) 8 9 def talk(conn,client_addr): 10 while True: 11 try: 12 msg=conn.recv(1024) 13 if not msg:break 14 conn.send(msg.upper()) 15 except Exception: 16 break 17 18 if __name__ == '__main__': #windows下start进程一定要写到这下面 19 while True: 20 conn,client_addr=server.accept() 21 p=Process(target=talk,args=(conn,client_addr)) 22 p.start()
1 from socket import * 2 3 client=socket(AF_INET,SOCK_STREAM) 4 client.connect(('127.0.0.1',8080)) 5 6 7 while True: 8 msg=input('>>: ').strip() 9 if not msg:continue 10 11 client.send(msg.encode('utf-8')) 12 msg=client.recv(1024) 13 print(msg.decode('utf-8'))
每来一个客户端,都在服务端开启一个进程,如果并发来一个万个客户端,要开启一万个进程吗,你自己尝试着在你自己的机器上开启一万个,10万个进程试一试。
解决方法:进程池
Process对象的join方法
1 from multiprocessing import Process 2 import time 3 import random 4 5 class Piao(Process): 6 def __init__(self,name): 7 self.name=name 8 super().__init__() 9 def run(self): 10 print('%s is piaoing' %self.name) 11 time.sleep(random.randrange(1,3)) 12 print('%s is piao end' %self.name) 13 14 15 p=Piao('egon') 16 p.start() 17 p.join(0.0001) #等待p停止,等0.0001秒就不再等了 18 print('开始')
1 from multiprocessing import Process 2 import time 3 import random 4 def piao(name): 5 print('%s is piaoing' %name) 6 time.sleep(random.randint(1,3)) 7 print('%s is piao end' %name) 8 9 p1=Process(target=piao,args=('egon',)) 10 p2=Process(target=piao,args=('alex',)) 11 p3=Process(target=piao,args=('yuanhao',)) 12 p4=Process(target=piao,args=('wupeiqi',)) 13 14 p1.start() 15 p2.start() 16 p3.start() 17 p4.start() 18 19 #有的同学会有疑问:既然join是等待进程结束,那么我像下面这样写,进程不就又变成串行的了吗? 20 #当然不是了,必须明确:p.join()是让谁等? 21 #很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p, 22 23 #详细解析如下: 24 #进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了 25 #而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键 26 #join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待 27 # 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间 28 p1.join() 29 p2.join() 30 p3.join() 31 p4.join() 32 33 print('主线程') 34 35 36 #上述启动进程与join进程可以简写为 37 # p_l=[p1,p2,p3,p4] 38 # 39 # for p in p_l: 40 # p.start() 41 # 42 # for p in p_l: 43 # p.join()
Process对象的其他方法或属性(了解)
1 #进程对象的其他方法一:terminate,is_alive 2 from multiprocessing import Process 3 import time 4 import random 5 6 class Piao(Process): 7 def __init__(self,name): 8 self.name=name 9 super().__init__() 10 11 def run(self): 12 print('%s is piaoing' %self.name) 13 time.sleep(random.randrange(1,5)) 14 print('%s is piao end' %self.name) 15 16 17 p1=Piao('egon1') 18 p1.start() 19 20 p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 21 print(p1.is_alive()) #结果为True 22 23 print('开始') 24 print(p1.is_alive()) #结果为False
1 from multiprocessing import Process 2 import time 3 import random 4 class Piao(Process): 5 def __init__(self,name): 6 # self.name=name 7 # super().__init__() #Process的__init__方法会执行self.name=Piao-1, 8 # #所以加到这里,会覆盖我们的self.name=name 9 10 #为我们开启的进程设置名字的做法 11 super().__init__() 12 self.name=name 13 14 def run(self): 15 print('%s is piaoing' %self.name) 16 time.sleep(random.randrange(1,3)) 17 print('%s is piao end' %self.name) 18 19 p=Piao('egon') 20 p.start() 21 print('开始') 22 print(p.pid) #查看pid
四 守护进程
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
1 from multiprocessing import Process 2 import time 3 import random 4 5 class Piao(Process): 6 def __init__(self,name): 7 self.name=name 8 super().__init__() 9 def run(self): 10 print('%s is piaoing' %self.name) 11 time.sleep(random.randrange(1,3)) 12 print('%s is piao end' %self.name) 13 14 15 p=Piao('egon') 16 p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 17 p.start() 18 print('主')
1 #主进程代码运行完毕,守护进程就会结束 2 from multiprocessing import Process 3 from threading import Thread 4 import time 5 def foo(): 6 print(123) 7 time.sleep(1) 8 print("end123") 9 10 def bar(): 11 print(456) 12 time.sleep(3) 13 print("end456") 14 15 16 p1=Process(target=foo) 17 p2=Process(target=bar) 18 19 p1.daemon=True 20 p1.start() 21 p2.start() 22 print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止
五 进程同步(锁)
进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,
竞争带来的结果就是错乱,如何控制,就是加锁处理
part1:多个进程共享同一打印终端
1 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 2 from multiprocessing import Process 3 import os,time 4 def work(): 5 print('%s is running' %os.getpid()) 6 time.sleep(2) 7 print('%s is done' %os.getpid()) 8 9 if __name__ == '__main__': 10 for i in range(3): 11 p=Process(target=work) 12 p.start()
1 #由并发变成了串行,牺牲了运行效率,但避免了竞争 2 from multiprocessing import Process,Lock 3 import os,time 4 def work(lock): 5 lock.acquire() 6 print('%s is running' %os.getpid()) 7 time.sleep(2) 8 print('%s is done' %os.getpid()) 9 lock.release() 10 if __name__ == '__main__': 11 lock=Lock() 12 for i in range(3): 13 p=Process(target=work,args=(lock,)) 14 p.start()
part2:多个进程共享同一文件
文件当数据库,模拟抢票
1 from multiprocessing import Process 2 import time, random 3 import json, os 4 from multiprocessing import Lock 5 6 def search(): 7 dic = json.load(open('../db/db.txt')) 8 print('