• 驱动_IR驱动框架


    驱动_IR驱动框架


    平台:全志A40I

    源码:Android 7.1  Linux 3.10

    路径:linux-3.10/drivers/media/rc

    接收驱动: sunxi-ir-dev.c
          rc-sunxi-keymaps.c

    核心层 : rc-core : rc-main.o
          ir-raw.o


    编码格式: ir-nec-decoder.c

                    

    键值映射表:rc-sunxi-keymaps.c

    Android对应键值映射表:androidout argetproducta40-p1systemusrkeylayout      Generic.kl

                 androiddevicesoftwinnera40-p1configs

     sunxi-ir-dev.c 

    
    

    /* Copyright (C) 2014 ALLWINNERTECH
    *
    * This program is free software; you can redistribute it and/or modify
    * it under the terms of the GNU General Public License version 2 and
    * only version 2 as published by the Free Software Foundation.
    *
    * This program is distributed in the hope that it will be useful,
    * but WITHOUT ANY WARRANTY; without even the implied warranty of
    * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    * GNU General Public License for more details.
    */
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/interrupt.h>
    #include <linux/gpio.h>
    #include <linux/slab.h>
    #include <linux/clk.h>
    #include <linux/of_gpio.h>
    #include <linux/platform_device.h>
    #include <linux/regulator/consumer.h>
    #include <linux/irq.h>
    #include <linux/of_platform.h>
    #include <linux/of_irq.h>
    #include <linux/of_address.h>
    #include <media/rc-core.h>
    #include "sunxi-ir-rx.h"

    
    

    #define SUNXI_IR_DRIVER_NAME "sunxi-rc-recv"
    #define SUNXI_IR_DEVICE_NAME "sunxi_ir_recv"

    
    

    #define RC5_UNIT 889000 /* ns */

    
    

    DEFINE_IR_RAW_EVENT(rawir);
    static struct sunxi_ir_data *ir_data;
    static struct rc_dev *sunxi_rcdev;
    static u32 is_receiving = 0;
    static bool pluse_pre = 0;
    static char ir_dev_name[] = "s_cir_rx";

    
    

    static int debug_mask = 0;
    #define dprintk(level_mask, fmt, arg...) if (unlikely(debug_mask & level_mask))
    printk(fmt , ## arg)
    #define IR_BASE (ir_data->reg_base)

    
    

    static inline u8 ir_get_data(void)
    {
    return (u8)(readl(IR_BASE + IR_RXDAT_REG) & 0xff);
    }

    
    

    static inline u32 ir_get_intsta(void)
    {
    return (readl(IR_BASE + IR_RXINTS_REG));
    }

    
    

    static inline void ir_clr_intsta(u32 bitmap)
    {
    u32 tmp = readl(IR_BASE + IR_RXINTS_REG);

    
    

    tmp &= ~0xff;
    tmp |= bitmap&0xff;
    writel(tmp, IR_BASE + IR_RXINTS_REG);
    }

    
    

    #ifdef CONFIG_OF
    /* Translate OpenFirmware node properties into platform_data */
    static struct of_device_id sunxi_ir_recv_of_match[] = {
    { .compatible = "allwinner,s_cir", },
    { .compatible = "allwinner,ir", },
    { },
    };
    MODULE_DEVICE_TABLE(of, sunxi_ir_recv_of_match);
    #else /* !CONFIG_OF */
    #endif
    static void sunxi_ir_recv(u32 reg_data)
    {
    bool pluse_now = 0;
    u32 ir_duration = 0;

    
    

    pluse_now = reg_data >> 7; /* get the polarity */
    ir_duration = reg_data & 0x7f; /* get duration, number of clocks */

    
    

    if (pluse_pre == pluse_now) {
    /* the signal sunperposition */
    rawir.duration += ir_duration;
    dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
    pluse_now, ir_duration);
    } else {
    #ifdef CONFIG_IR_RC5
    rawir.duration *= IR_SIMPLE_UNIT;
    dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
    rawir.pulse, rawir.duration);
    if ((rawir.duration > (RC5_UNIT + RC5_UNIT/2))
    && (rawir.duration < (2*RC5_UNIT + RC5_UNIT/2))) {
    rawir.duration = rawir.duration/2;
    ir_raw_event_store(sunxi_rcdev, &rawir);
    ir_raw_event_store(sunxi_rcdev, &rawir);
    } else
    ir_raw_event_store(sunxi_rcdev, &rawir);

    
    

    rawir.pulse = pluse_now;
    rawir.duration = ir_duration;
    dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
    pluse_now, ir_duration);
    #else
    if (is_receiving) {
    rawir.duration *= IR_SIMPLE_UNIT;
    dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
    rawir.pulse, rawir.duration);
    ir_raw_event_store(sunxi_rcdev, &rawir);
    rawir.pulse = pluse_now;
    rawir.duration = ir_duration;
    dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
    pluse_now, ir_duration);
    } else {
    /* get the first pluse signal */
    rawir.pulse = pluse_now;
    rawir.duration = ir_duration;
    /* Since IR hardware will cut Active Threshold time,
    * So just add comeback */
    rawir.duration += ((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1);
    is_receiving = 1;
    dprintk(DEBUG_INT, "get frist pulse,add head %d !! ",
    ((IR_ACTIVE_T>>16)+1) * ((IR_ACTIVE_T_C>>23) ? 128 : 1));
    dprintk(DEBUG_INT, "raw: polar=%d; dur=%d ",
    pluse_now, ir_duration);
    }
    #endif
    pluse_pre = pluse_now;
    }
    }
    static irqreturn_t sunxi_ir_recv_irq(int irq, void *dev_id)
    {
    u32 intsta,dcnt;
    u32 i = 0;
    u32 reg_data;

    
    

    // printk("_____sunxi_ir_recv_irq ok ! ");

    dprintk(DEBUG_INT, "IR RX IRQ Serve ");

    
    

    intsta = ir_get_intsta();
    ir_clr_intsta(intsta);

    
    

    /* get the count of signal */
    dcnt = (intsta>>8) & 0x7f;
    dprintk(DEBUG_INT, "receive cnt :%d ", dcnt);

    /* Read FIFO and fill the raw event */
    for (i=0; i<dcnt; i++) {
    /* get the data from fifo */
    reg_data = ir_get_data();
    /* Byte in FIFO format YXXXXXXX(B) Y:polarity(0:low level, 1:high level) X:Number of clocks */
    sunxi_ir_recv(reg_data);
    }

    
    

    if (intsta & IR_RXINTS_RXPE) {
    /* The last pulse can not call ir_raw_event_store()
    * since miss invert level in above, manu call */
    if (rawir.duration) {
    rawir.duration *= IR_SIMPLE_UNIT;
    dprintk(DEBUG_INT, "pusle :polar=%d, dur: %u ns ",
    rawir.pulse, rawir.duration);
    ir_raw_event_store(sunxi_rcdev, &rawir);
    }
    dprintk(DEBUG_INT, "handle raw data. ");
    /* handle ther decoder theread */
    ir_raw_event_handle(sunxi_rcdev);
    is_receiving = 0;
    pluse_pre = false;
    }

    
    

    if (intsta & IR_RXINTS_RXOF) {
    /* FIFO Overflow */
    pr_err("ir_rx_irq_service: Rx FIFO Overflow!! ");
    is_receiving = 0;
    pluse_pre = false;
    }

    
    

    return IRQ_HANDLED;
    }

    
    


    static void ir_mode_set(enum ir_mode set_mode)
    {
    u32 ctrl_reg = 0;

    
    

    switch (set_mode) {
    case CIR_MODE_ENABLE:
    ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
    ctrl_reg |= IR_CIR_MODE;
    break;
    case IR_MODULE_ENABLE:
    ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
    ctrl_reg |= IR_ENTIRE_ENABLE;
    break;
    case IR_BOTH_PULSE_MODE:
    ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
    ctrl_reg |= IR_BOTH_PULSE;
    break;
    case IR_LOW_PULSE_MODE:
    ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
    ctrl_reg |= IR_LOW_PULSE;
    break;
    case IR_HIGH_PULSE_MODE:
    ctrl_reg = readl(IR_BASE+IR_CTRL_REG);
    ctrl_reg |= IR_HIGH_PULSE;
    break;
    default:
    pr_err("ir_mode_set error!! ");
    return;
    }
    writel(ctrl_reg, IR_BASE+IR_CTRL_REG);
    }

    
    

    static void ir_sample_config(enum ir_sample_config set_sample)
    {
    u32 sample_reg = 0;

    
    

    sample_reg = readl(IR_BASE+IR_SPLCFG_REG);

    
    

    switch (set_sample) {
    case IR_SAMPLE_REG_CLEAR:
    sample_reg = 0;
    break;
    case IR_CLK_SAMPLE:
    sample_reg |= IR_SAMPLE_DEV;
    break;
    case IR_FILTER_TH:
    #ifdef CONFIG_IR_RC5
    sample_reg |= IR_RXFILT_VAL_RC5;
    #else
    sample_reg |= IR_RXFILT_VAL;
    #endif
    break;
    case IR_IDLE_TH:
    sample_reg |= IR_RXIDLE_VAL;
    break;
    case IR_ACTIVE_TH:
    sample_reg |= IR_ACTIVE_T;
    sample_reg |= IR_ACTIVE_T_C;
    break;
    case IR_ACTIVE_TH_SAMPLE:
    sample_reg |= IR_ACTIVE_T_SAMPLE;
    sample_reg &= ~IR_ACTIVE_T_C;
    break;
    default:
    return;
    }
    writel(sample_reg, IR_BASE+IR_SPLCFG_REG);
    }

    
    

    static void ir_signal_invert(void)
    {
    u32 reg_value;
    reg_value = 0x1<<2;
    writel(reg_value, IR_BASE+IR_RXCFG_REG);
    }

    
    

    static void ir_irq_config(enum ir_irq_config set_irq)
    {
    u32 irq_reg = 0;

    
    

    switch (set_irq) {
    case IR_IRQ_STATUS_CLEAR:
    writel(0xef, IR_BASE+IR_RXINTS_REG);
    return;
    case IR_IRQ_ENABLE:
    irq_reg = readl(IR_BASE+IR_RXINTE_REG);
    irq_reg |= IR_IRQ_STATUS;
    break;
    case IR_IRQ_FIFO_SIZE:
    irq_reg = readl(IR_BASE+IR_RXINTE_REG);
    irq_reg |= IR_FIFO_20;
    break;
    default:
    return;
    }
    writel(irq_reg, IR_BASE+IR_RXINTE_REG);
    }

    
    

    static void ir_reg_cfg(void)
    {
    /* Enable IR Mode */
    ir_mode_set(CIR_MODE_ENABLE);
    /* Config IR Smaple Register */
    ir_sample_config(IR_SAMPLE_REG_CLEAR);
    ir_sample_config(IR_CLK_SAMPLE);
    ir_sample_config(IR_FILTER_TH); /* Set Filter Threshold */
    ir_sample_config(IR_IDLE_TH); /* Set Idle Threshold */

    
    

    #ifdef CONFIG_IR_RC5
    ir_sample_config(IR_ACTIVE_TH_SAMPLE); /* rc5 Set Active Threshold */
    /* Invert Input Signal */
    #else
    ir_sample_config(IR_ACTIVE_TH); /* Set Active Threshold */
    #endif
    ir_signal_invert();
    /* Clear All Rx Interrupt Status */
    ir_irq_config(IR_IRQ_STATUS_CLEAR);
    /* Set Rx Interrupt Enable */
    ir_irq_config(IR_IRQ_ENABLE);
    ir_irq_config(IR_IRQ_FIFO_SIZE); /* Rx FIFO Threshold = FIFOsz/2; */
    /* for NEC decode which start with high level in the header so should
    * use IR_HIGH_PULSE_MODE mode, but some ICs don't support this function
    * therefor use IR_BOTH_PULSE_MODE mode as default
    */
    ir_mode_set(IR_BOTH_PULSE_MODE);
    /* Enable IR Module */
    ir_mode_set(IR_MODULE_ENABLE);

    
    

    return;
    }

    
    

    static void ir_clk_cfg(void)
    {

    
    

    unsigned long rate = 0;

    
    

    rate = clk_get_rate(ir_data->pclk);
    dprintk(DEBUG_INT, "%s: get ir parent rate %dHZ ", __func__, (__u32)rate);

    
    

    if(clk_set_parent(ir_data->mclk, ir_data->pclk))
    pr_err("%s: set ir_clk parent failed! ", __func__);

    
    

    if (clk_set_rate(ir_data->mclk, IR_CLK)) {
    pr_err("set ir clock freq to %d failed! ", IR_CLK);
    }
    rate = clk_get_rate(ir_data->mclk);
    dprintk(DEBUG_INT, "%s: get ir_clk rate %dHZ ", __func__, (__u32)rate);

    
    

    if (clk_prepare_enable(ir_data->mclk)) {
    pr_err("try to enable ir_clk failed! ");
    }

    
    

    return;
    }

    
    

    static void ir_clk_uncfg(void)
    {

    
    

    if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
    pr_err("ir_clk handle is invalid, just return! ");
    return;
    } else {
    clk_disable_unprepare(ir_data->mclk);
    clk_put(ir_data->mclk);
    ir_data->mclk = NULL;
    }

    
    

    if(NULL == ir_data->pclk || IS_ERR(ir_data->pclk)) {
    pr_err("ir_clk_source handle is invalid, just return! ");
    return;
    } else {
    clk_put(ir_data->pclk);
    ir_data->pclk = NULL;
    }
    return;
    }

    
    

    static void ir_setup(void)
    {
    dprintk(DEBUG_INIT, "ir_rx_setup: ir setup start!! ");

    
    

    ir_clk_cfg();
    ir_reg_cfg();

    
    

    dprintk(DEBUG_INIT, "ir_rx_setup: ir setup end!! ");
    return;
    }

    
    

    static int sunxi_ir_startup(struct platform_device *pdev)
    {
    struct device_node *np =NULL;
    int i, ret = 0;
    char addr_name[32];
    const char *name = NULL;

    ir_data = kzalloc(sizeof(*ir_data), GFP_KERNEL);
    if (IS_ERR_OR_NULL(ir_data)) {
    pr_err("ir_data: not enough memory for ir data ");
    return -ENOMEM;
    }

    
    

    np = pdev->dev.of_node;

    ir_data->reg_base= of_iomap(np, 0);
    if (NULL == ir_data->reg_base) {
    pr_err("%s:Failed to ioremap() io memory region. ",__func__);
    ret = -EBUSY;
    }else
    dprintk(DEBUG_INIT, "ir base: %p ! ",ir_data->reg_base);
    ir_data->irq_num= irq_of_parse_and_map(np, 0);
    if (0 == ir_data->irq_num) {
    pr_err("%s:Failed to map irq. ", __func__);
    ret = -EBUSY;
    }else
    dprintk(DEBUG_INIT, "ir irq num: %d ! ",ir_data->irq_num);
    ir_data->pclk = of_clk_get(np, 0);
    ir_data->mclk = of_clk_get(np, 1);
    if (NULL==ir_data->pclk||IS_ERR(ir_data->pclk)
    ||NULL==ir_data->mclk||IS_ERR(ir_data->mclk)) {
    pr_err("%s:Failed to get clk. ", __func__);
    ret = -EBUSY;
    }
    if (of_property_read_u32(np, "ir_addr_cnt", &ir_data->ir_addr_cnt)) {
    pr_err("%s: get cir addr cnt failed", __func__);
    ret = -EBUSY;
    }
    if(ir_data->ir_addr_cnt > MAX_ADDR_NUM)
    ir_data->ir_addr_cnt = MAX_ADDR_NUM;
    for(i = 0; i < ir_data->ir_addr_cnt; i++){
    sprintf(addr_name, "ir_addr_code%d", i);
    if (of_property_read_u32(np, (const char *)&addr_name,
    &ir_data->ir_addr[i])) {
    pr_err("node %s get failed! ", name);
    ret = -EBUSY;
    }
    }
    if (of_property_read_u32(np, "supply_vol", &ir_data->suply_vol)) {
    pr_err("%s: get cir supply_vol failed", __func__);
    }
    if (of_property_read_string(np, "supply", &name)) {
    pr_err("%s: cir have no power supply ", __func__);
    } else {
    ir_data->suply = regulator_get(NULL, name);
    if(IS_ERR(ir_data->suply)){
    pr_err("%s: cir get supply err ", __func__);
    ir_data->suply = NULL;
    }
    }

    
    

    return ret;
    }

    
    

    static int sunxi_ir_recv_probe(struct platform_device *pdev)
    {
    int rc;
    // printk("_____sunxi_ir_recv_probe_____ ok ! ");
    // struct input_dev *input;
    dprintk(DEBUG_INIT, "sunxi-ir probe start ! ");

    
    

    if (pdev->dev.of_node) {
    /* get dt and sysconfig */
    rc = sunxi_ir_startup(pdev);
    }else{
    pr_err("sunxi ir device tree err! ");
    return -EBUSY;
    }

    
    

    if( rc < 0)
    goto err_allocate_device;

    
    

    sunxi_rcdev = rc_allocate_device();
    if (!sunxi_rcdev) {
    rc = -ENOMEM;
    pr_err("rc dev allocate fail ! ");
    goto err_allocate_device;
    }

    
    

    sunxi_rcdev->driver_type = RC_DRIVER_IR_RAW;
    sunxi_rcdev->input_name = SUNXI_IR_DEVICE_NAME;
    sunxi_rcdev->input_phys = SUNXI_IR_DEVICE_NAME "/input0";
    sunxi_rcdev->input_id.bustype = BUS_HOST;
    sunxi_rcdev->input_id.vendor = 0x0001;
    sunxi_rcdev->input_id.product = 0x0001;
    sunxi_rcdev->input_id.version = 0x0100;
    sunxi_rcdev->dev.parent = &pdev->dev;
    sunxi_rcdev->driver_name = SUNXI_IR_DRIVER_NAME;

    
    


    input_set_capability(sunxi_rcdev->input_dev, EV_REL, REL_X);
    input_set_capability(sunxi_rcdev->input_dev, EV_REL, REL_Y);
    input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_LEFT);
    input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_MIDDLE);
    input_set_capability(sunxi_rcdev->input_dev, EV_KEY, BTN_RIGHT);

    //input_set_abs_params(dev1, ABS_PRESSURE, 0, 127, 0, 0);


    #ifdef CONFIG_IR_RC5
    sunxi_rcdev->allowed_protos = (u64)RC_BIT_RC5;
    #else
    sunxi_rcdev->allowed_protos = (u64)RC_BIT_NEC;
    #endif
    sunxi_rcdev->map_name = RC_MAP_SUNXI;

    
    

    init_rc_map_sunxi(ir_data->ir_addr, ir_data->ir_addr_cnt);
    rc = rc_register_device(sunxi_rcdev);
    if (rc < 0) {
    dev_err(&pdev->dev, "failed to register rc device ");
    goto err_register_rc_device;
    }
    sunxi_rcdev->enabled_protocols = sunxi_rcdev->allowed_protos;;
    sunxi_rcdev->input_dev->dev.init_name = &ir_dev_name[0];

    
    

    if (0 != rc) {
    pr_err("%s: config ir rx pin err. ", __func__);
    goto err_platfrom_device;
    }

    
    

    platform_set_drvdata(pdev, sunxi_rcdev);
    ir_data->rcdev = sunxi_rcdev;
    if(ir_data->suply){
    rc = regulator_set_voltage(ir_data->suply, ir_data->suply_vol, ir_data->suply_vol);
    rc |= regulator_enable(ir_data->suply);
    }
    ir_setup();

    if (request_irq(ir_data->irq_num, sunxi_ir_recv_irq, IRQF_DISABLED, "RemoteIR_RX",
    sunxi_rcdev)) {
    pr_err("%s: request irq fail. ", __func__);
    rc = -EBUSY;
    goto err_request_irq;
    }

    
    

    /* enable here */
    dprintk(DEBUG_INIT, "ir probe end! ");
    return 0;

    
    

    err_request_irq:
    platform_set_drvdata(pdev, NULL);
    rc_unregister_device(sunxi_rcdev);
    sunxi_rcdev = NULL;
    ir_clk_uncfg();
    if(ir_data->suply){
    regulator_disable(ir_data->suply);
    regulator_put(ir_data->suply);
    }
    err_platfrom_device:
    exit_rc_map_sunxi();
    err_register_rc_device:
    rc_free_device(sunxi_rcdev);
    err_allocate_device:
    if(ir_data)
    kfree(ir_data);
    return rc;
    }

    
    

    static int sunxi_ir_recv_remove(struct platform_device *pdev)
    {
    free_irq(ir_data->irq_num, sunxi_rcdev);
    ir_clk_uncfg();
    platform_set_drvdata(pdev, NULL);
    if(ir_data->suply){
    regulator_disable(ir_data->suply);
    regulator_put(ir_data->suply);
    }
    rc_unregister_device(sunxi_rcdev);
    exit_rc_map_sunxi();
    if(ir_data)
    kfree(ir_data);
    return 0;
    }

    
    

    #ifdef CONFIG_PM
    static int sunxi_ir_recv_suspend(struct device *dev)
    {
    dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_suspend. ");

    
    

    disable_irq_nosync(ir_data->irq_num);

    
    

    if(NULL == ir_data->mclk || IS_ERR(ir_data->mclk)) {
    pr_err("ir_clk handle is invalid, just return! ");
    return -1;
    } else {
    clk_disable_unprepare(ir_data->mclk);
    }
    return 0;
    }

    
    

    static int sunxi_ir_recv_resume(struct device *dev)
    {
    dprintk(DEBUG_SUSPEND, "enter: sunxi_ir_rx_resume. ");

    
    

    clk_prepare_enable(ir_data->mclk);
    ir_reg_cfg();
    enable_irq(ir_data->irq_num);

    
    

    return 0;
    }

    
    

    static const struct dev_pm_ops sunxi_ir_recv_pm_ops = {
    .suspend = sunxi_ir_recv_suspend,
    .resume = sunxi_ir_recv_resume,
    };
    #endif

    
    

    static struct platform_driver sunxi_ir_recv_driver = {
    .probe = sunxi_ir_recv_probe,
    .remove = sunxi_ir_recv_remove,
    .driver = {
    .name = SUNXI_IR_DRIVER_NAME,
    .owner = THIS_MODULE,
    .of_match_table = of_match_ptr(sunxi_ir_recv_of_match),
    #ifdef CONFIG_PM
    .pm = &sunxi_ir_recv_pm_ops,
    #endif
    },
    };
    module_platform_driver(sunxi_ir_recv_driver);
    module_param_named(debug_mask, debug_mask, int, 0644);
    MODULE_DESCRIPTION("SUNXI IR Receiver driver");
    MODULE_AUTHOR("QIn");
    MODULE_LICENSE("GPL v2");

     

     ir-nec-decoder.c

    /* ir-nec-decoder.c - handle NEC IR Pulse/Space protocol
     *
     * Copyright (C) 2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
     *
     * This program is free software; you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation version 2 of the License.
     *
     *  This program is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     */
    
    #include <linux/bitrev.h>
    #include <linux/module.h>
    #include "rc-core-priv.h"
    
    #define NEC_NBITS        8
    #define NEC_UNIT        562500  /* ns */
    #define NEC_HEADER_PULSE    (16 * NEC_UNIT)
    #define NECX_HEADER_PULSE    (8  * NEC_UNIT) /* Less common NEC variant */
    #define NEC_HEADER_SPACE    (8  * NEC_UNIT)
    #define NEC_REPEAT_SPACE    (4  * NEC_UNIT)
    #define NEC_BIT_PULSE        (1  * NEC_UNIT)
    #define NEC_BIT_0_SPACE        (1  * NEC_UNIT)
    #define NEC_BIT_1_SPACE        (3  * NEC_UNIT)
    #define    NEC_TRAILER_PULSE    (1  * NEC_UNIT)
    #define    NEC_TRAILER_SPACE    (10 * NEC_UNIT) /* even longer in reality */
    #define NECX_REPEAT_BITS    1
    
    /***********  fsp  *************/
    #define  fsp_head_first  5000000            
    #define  fsp_head_end    5000000
    #define  data_first      500000
    #define  data_end_0      1500000
    #define  data_end_1      500000
    #define  fsp_end         1000000
    /*******************************/
    
    
    enum nec_state {
        STATE_INACTIVE,
        STATE_HEADER_SPACE,
        STATE_BIT_PULSE,
        STATE_BIT_SPACE,
        STATE_TRAILER_PULSE,
        STATE_TRAILER_SPACE,
    };
    
    /**
     * ir_nec_decode() - Decode one NEC pulse or space
     * @dev:    the struct rc_dev descriptor of the device
     * @duration:    the struct ir_raw_event descriptor of the pulse/space
     *
     * This function returns -EINVAL if the pulse violates the state machine
     */
    static int ir_nec_decode(struct rc_dev *dev, struct ir_raw_event ev)
    {
        struct nec_dec *data = &dev->raw->nec;
        u32 scancode;
        u8 address, not_address, command, not_command;
        bool send_32bits = false;
    
        if (!(dev->enabled_protocols & RC_BIT_NEC))
            return 0;
    
        if (!is_timing_event(ev)) {
            if (ev.reset)
                data->state = STATE_INACTIVE;
            return 0;
        }
    
        IR_dprintk(2, "NEC decode started at state %d (%uus %s)
    ",
               data->state, TO_US(ev.duration), TO_STR(ev.pulse));
    
        switch (data->state) {
    
        case STATE_INACTIVE:  //0          
    //        printk("STATE_INACTIVE=0x%x  , time  =  %d
    ",STATE_INACTIVE,ev.duration);
            if (!ev.pulse)
                break;
    
            if (eq_margin(ev.duration, fsp_head_first, NEC_UNIT * 3)) {
                data->is_nec_x = false;
                data->necx_repeat = false;
            } else if (eq_margin(ev.duration, fsp_head_end, NEC_UNIT * 3))
                data->is_nec_x = true;
            else
                break;
    
            data->count = 0;
            data->state = STATE_HEADER_SPACE;
            return 0;
    
        case STATE_HEADER_SPACE:  //1 
    //        printk("STATE_HEADER_SPACE   =   0x%x, time  =  %d
    ",STATE_HEADER_SPACE,ev.duration);
            if (ev.pulse)
                break;
    
            if (eq_margin(ev.duration, fsp_head_end, NEC_UNIT * 3)) {
                data->state = STATE_BIT_PULSE;
                return 0;
            } /* else if (eq_margin(ev.duration, NEC_REPEAT_SPACE, NEC_UNIT / 2)) {
                if (!dev->keypressed) {
                    IR_dprintk(1, "Discarding last key repeat: event after key up
    ");
                } else {
                    rc_repeat(dev);
                    IR_dprintk(1, "Repeat last key
    ");
                    data->state = STATE_TRAILER_PULSE;
                }
                return 0;
            } */ 
    
            break;
    
        case STATE_BIT_PULSE:  //2
    //        printk("STATE_BIT_PULSE   =   0x%x, time  =  %d
    ",STATE_BIT_PULSE,ev.duration);
            if (!ev.pulse)
                break;
    
            if (eq_margin(ev.duration, data_first, NEC_UNIT * 2))  // 500
                break;
    
            data->state = STATE_BIT_SPACE;
            return 0;
    
        case STATE_BIT_SPACE:  //3
    //        printk("STATE_BIT_SPACE   =   0x%x, time  =  %d
    ",STATE_BIT_SPACE,ev.duration);
            if (ev.pulse)
                break;
    
            if (data->necx_repeat && data->count == NECX_REPEAT_BITS &&
                geq_margin(ev.duration,
                1000, NEC_UNIT / 2)) {
                    IR_dprintk(1, "Repeat last key
    ");
                    rc_repeat(dev);
                    data->state = STATE_INACTIVE;
                    return 0;
    
            } else if (data->count > NECX_REPEAT_BITS)
                data->necx_repeat = false;
    
            data->bits <<= 1;
            if (eq_margin(ev.duration, data_end_1, 300000))
                data->bits |= 1;
            else if (!eq_margin(ev.duration, data_end_0, 300000))
                data->bits |= 0;
            data->count++;
    
            if (data->count == NEC_NBITS)    //32bit 
                data->state = STATE_TRAILER_PULSE;
            else
                data->state = STATE_BIT_PULSE;
    
            return 0;
    
        case STATE_TRAILER_PULSE:  //4
    //        printk("SSTATE_TRAILER_PULSE   =   0x%x, time  =  %d
    ",STATE_TRAILER_PULSE,ev.duration);
            if (!ev.pulse)
                break;
    
            if (!eq_margin(ev.duration, fsp_end, 100000))
                break;
    
            data->state = STATE_TRAILER_SPACE;
            return 0;
    
        case STATE_TRAILER_SPACE:  //5
    //        printk("STATE_TRAILER_SPACE   =   0x%x, time  =  %d
    ",STATE_TRAILER_SPACE,ev.duration);
            if (ev.pulse)
                break;
    
            //if (!geq_margin(ev.duration, NEC_TRAILER_SPACE, NEC_UNIT / 2))
            //    break;
    #if 0 
            address     =  (data->bits & 0xff000000) >> 24;
            not_address =  (data->bits & 0xff0000) >> 16;
            command     =  (data->bits & 0xff00) >> 8;
            not_command =  (data->bits & 0xff) >> 0;
    
    
            if((address ^ not_address) == 0xff){
                if((command ^ not_command) == 0xff){
                    scancode = (address << 8)| command;
                }
            
                else{
                    data->state = STATE_INACTIVE;    
                    return 0;
                }
            }    
            else{
                data->state = STATE_INACTIVE;
                return 0;
            }
    #endif        
            
            
            address = data->bits & 0x0f;
            command = (data->bits & 0xf0)>>4; 
            if((address ^ command) == 0x0f)
                scancode = data->bits &0xff;
            else
                data->state = STATE_INACTIVE;        
            
            
                    
            printk("
    
    _______________NEC scancode_______________ =  0x%x
    
    ",scancode);        
            
    
    #if 0 
            address     = bitrev8((data->bits >> 24) & 0xff);
            not_address = bitrev8((data->bits >> 16) & 0xff);
            command        = bitrev8((data->bits >>  8) & 0xff);
            not_command = bitrev8((data->bits >>  0) & 0xff);
    
            if ((command ^ not_command) != 0xff) {
                IR_dprintk(1, "NEC checksum error: received 0x%08x
    ",
                       data->bits);
                send_32bits = true;
            }
    
            if (send_32bits) {
                /* NEC transport, but modified protocol, used by at
                 * least Apple and TiVo remotes */
                scancode = data->bits;
                IR_dprintk(1, "NEC (modified) scancode 0x%08x
    ", scancode);
            } else if ((address ^ not_address) != 0xff) {
                /* Extended NEC */
                scancode = address     << 16 |
                       not_address <<  8 |
                       command;
                IR_dprintk(1, "NEC (Ext) scancode 0x%06x
    ", scancode);
            } else {
                /* Normal NEC */
                scancode = address << 8 | command;
                IR_dprintk(1, "NEC scancode 0x%04x
    ", scancode);
            }
    
            if (data->is_nec_x)
                data->necx_repeat = true;
    #endif
    
    
            rc_keydown(dev, scancode, 0);
            data->state = STATE_INACTIVE;
            scancode = 0;
            return 0;
        }
    
        IR_dprintk(1, "NEC decode failed at count %d state %d (%uus %s)
    ",
               data->count, data->state, TO_US(ev.duration), TO_STR(ev.pulse));
        data->state = STATE_INACTIVE;
        return -EINVAL;
    }
    
    static struct ir_raw_handler nec_handler = {
        .protocols    = RC_BIT_NEC,
        .decode        = ir_nec_decode,
    };
    
    static int __init ir_nec_decode_init(void)
    {
        ir_raw_handler_register(&nec_handler);
    
        printk(KERN_INFO "IR NEC protocol handler initialized
    ");
        return 0;
    }
    
    static void __exit ir_nec_decode_exit(void)
    {
        ir_raw_handler_unregister(&nec_handler);
    }
    
    module_init(ir_nec_decode_init);
    module_exit(ir_nec_decode_exit);
    
    MODULE_LICENSE("GPL");
    MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
    MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
    MODULE_DESCRIPTION("NEC IR protocol decoder");

     rc-sunxi-keymaps.c

    /* Sunxi Remote Controller
     *
     * keymap imported from ir-keymaps.c
     *
     * Copyright (c) 2014 by allwinnertech
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     */
    
    #include <media/rc-map.h>
    #include "sunxi-ir-rx.h"
    
    #define MAX_ADDR_NUM (18)
    
    static u32 match_addr[MAX_ADDR_NUM];
    static u32 match_num;
    
    static struct rc_map_table sunxi_nec_scan[] = {
    //    { KEY_ESC, KEY_ESC },
    #if 0
        { 0x0812, KEY_VOLUMEDOWN },
        { 0x0813, KEY_VOLUMEUP },    
        { 0x0850, KEY_PLAY },           /*********** FSP  begin   KEYCODE_MEDIA_PLAY *********/
        { 0x0851, KEY_PAUSE },        
        { 0x0852, KEY_BACK },    
        { 0x0853, KEY_FORWARD },
        { 0x0854, KEY_CLOSECD },
        { 0x0855, KEY_EJECTCD },     
        { 0x0856, KEY_EJECTCLOSECD },    
        { 0x0857, KEY_NEXTSONG },
        { 0x0858, KEY_PLAYPAUSE },
        { 0x0859, KEY_PREVIOUSSONG },     
        { 0x0860, KEY_STOPCD },
        { 0x0861, KEY_RECORD },     
        { 0x0862, KEY_REWIND },     
        { 0x0863, KEY_FASTFORWARD},    
        { 0x0864, KEY_STOP},    
    #endif    
        
        { 0xE1, KEY_VOLUMEDOWN },
        { 0x1E, KEY_VOLUMEUP },    
        { 0xD2, KEY_PLAY },           /*********** FSP  begin   KEYCODE_MEDIA_PLAY *********/
        { 0x2D, KEY_PAUSE },        
        { 0xC3, KEY_BACK },    
        { 0x3C, KEY_FORWARD },
        { 0xB4, KEY_CLOSECD },
        { 0x4B, KEY_EJECTCD },     
        { 0xA5, KEY_EJECTCLOSECD },    
        { 0x5A, KEY_NEXTSONG },
        { 0xF0, KEY_PLAYPAUSE },
        { 0x0F, KEY_PREVIOUSSONG },     
        { 0x96, KEY_STOPCD },
    //    { 0x69, KEY_RECORD },     
        { 0x87, KEY_REWIND },     
        { 0x78, KEY_FASTFORWARD},    
        { 0x69, KEY_STOP},    
        
    };
    
    static u32 sunxi_key_mapping(u32 code)
    {
        u32 i,temp;
        temp = (code >> 8)&0xffff;
        for(i = 0; i < match_num; i++){
            if(match_addr[i] == temp)
                return code;
        }
    
        return KEY_RESERVED;
    }
    
    static struct rc_map_list sunxi_map = {
        .map = {
            .scan    = sunxi_nec_scan,
            .size    = ARRAY_SIZE(sunxi_nec_scan),
    //        .mapping = sunxi_key_mapping,
            .rc_type = RC_TYPE_NEC,    /* Legacy IR type */
            .name    = RC_MAP_SUNXI,
        }
    };
    
    static void init_addr(u32 *addr, u32 addr_num)
    {
        u32 *temp_addr = match_addr;
        if(addr_num > MAX_ADDR_NUM)
            addr_num = MAX_ADDR_NUM;
        match_num = addr_num;
        while(addr_num--){
            *temp_addr++ = (*addr++)&0xffff;
        }
        return;
    }
    
    int init_rc_map_sunxi(u32 *addr, u32 addr_num)
    {
        init_addr(addr,addr_num);
        return rc_map_register(&sunxi_map);
    }
    
    void exit_rc_map_sunxi(void)
    {
        rc_map_unregister(&sunxi_map);
    }

     rc-main.c

    /* rc-main.c - Remote Controller core module
     *
     * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
     *
     * This program is free software; you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation version 2 of the License.
     *
     *  This program is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     */
    
    #include <media/rc-core.h>
    #include <linux/spinlock.h>
    #include <linux/delay.h>
    #include <linux/input.h>
    #include <linux/slab.h>
    #include <linux/device.h>
    #include <linux/module.h>
    #include "rc-core-priv.h"
    
    /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
    #define IR_TAB_MIN_SIZE    256
    #define IR_TAB_MAX_SIZE    8192
    
    /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
    #define IR_KEYPRESS_TIMEOUT 250
    
    /* Used to keep track of known keymaps */
    static LIST_HEAD(rc_map_list);
    static DEFINE_SPINLOCK(rc_map_lock);
    
    static struct rc_map_list *seek_rc_map(const char *name)
    {
        struct rc_map_list *map = NULL;
    
        spin_lock(&rc_map_lock);
        list_for_each_entry(map, &rc_map_list, list) {
            if (!strcmp(name, map->map.name)) {
                spin_unlock(&rc_map_lock);
                return map;
            }
        }
        spin_unlock(&rc_map_lock);
    
        return NULL;
    }
    
    struct rc_map *rc_map_get(const char *name)
    {
    
        struct rc_map_list *map;
    
        map = seek_rc_map(name);
    #ifdef MODULE
        if (!map) {
            int rc = request_module(name);
            if (rc < 0) {
                printk(KERN_ERR "Couldn't load IR keymap %s
    ", name);
                return NULL;
            }
            msleep(20);    /* Give some time for IR to register */
    
            map = seek_rc_map(name);
        }
    #endif
        if (!map) {
            printk(KERN_ERR "IR keymap %s not found
    ", name);
            return NULL;
        }
    
        printk(KERN_INFO "Registered IR keymap %s
    ", map->map.name);
    
        return &map->map;
    }
    EXPORT_SYMBOL_GPL(rc_map_get);
    
    int rc_map_register(struct rc_map_list *map)
    {
        spin_lock(&rc_map_lock);
        list_add_tail(&map->list, &rc_map_list);
        spin_unlock(&rc_map_lock);
        return 0;
    }
    EXPORT_SYMBOL_GPL(rc_map_register);
    
    void rc_map_unregister(struct rc_map_list *map)
    {
        spin_lock(&rc_map_lock);
        list_del(&map->list);
        spin_unlock(&rc_map_lock);
    }
    EXPORT_SYMBOL_GPL(rc_map_unregister);
    
    
    static struct rc_map_table empty[] = {
        { 0x2a, KEY_COFFEE },
    };
    
    static struct rc_map_list empty_map = {
        .map = {
            .scan    = empty,
            .size    = ARRAY_SIZE(empty),
            .rc_type = RC_TYPE_UNKNOWN,    /* Legacy IR type */
            .name    = RC_MAP_EMPTY,
        }
    };
    
    /**
     * ir_create_table() - initializes a scancode table
     * @rc_map:    the rc_map to initialize
     * @name:    name to assign to the table
     * @rc_type:    ir type to assign to the new table
     * @size:    initial size of the table
     * @return:    zero on success or a negative error code
     *
     * This routine will initialize the rc_map and will allocate
     * memory to hold at least the specified number of elements.
     */
    static int ir_create_table(struct rc_map *rc_map,
                   const char *name, u64 rc_type, size_t size)
    {
        rc_map->name = name;
        rc_map->rc_type = rc_type;
        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
        if (!rc_map->scan)
            return -ENOMEM;
    
        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)
    ",
               rc_map->size, rc_map->alloc);
        return 0;
    }
    
    /**
     * ir_free_table() - frees memory allocated by a scancode table
     * @rc_map:    the table whose mappings need to be freed
     *
     * This routine will free memory alloctaed for key mappings used by given
     * scancode table.
     */
    static void ir_free_table(struct rc_map *rc_map)
    {
        rc_map->size = 0;
        if(rc_map->scan){
            kfree(rc_map->scan);
            rc_map->scan = NULL;
        }
    }
    
    /**
     * ir_resize_table() - resizes a scancode table if necessary
     * @rc_map:    the rc_map to resize
     * @gfp_flags:    gfp flags to use when allocating memory
     * @return:    zero on success or a negative error code
     *
     * This routine will shrink the rc_map if it has lots of
     * unused entries and grow it if it is full.
     */
    static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
    {
        unsigned int oldalloc = rc_map->alloc;
        unsigned int newalloc = oldalloc;
        struct rc_map_table *oldscan = rc_map->scan;
        struct rc_map_table *newscan;
    
        if (rc_map->size == rc_map->len) {
            /* All entries in use -> grow keytable */
            if (rc_map->alloc >= IR_TAB_MAX_SIZE)
                return -ENOMEM;
    
            newalloc *= 2;
            IR_dprintk(1, "Growing table to %u bytes
    ", newalloc);
        }
    
        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
            /* Less than 1/3 of entries in use -> shrink keytable */
            newalloc /= 2;
            IR_dprintk(1, "Shrinking table to %u bytes
    ", newalloc);
        }
    
        if (newalloc == oldalloc)
            return 0;
    
        newscan = kmalloc(newalloc, gfp_flags);
        if (!newscan) {
            IR_dprintk(1, "Failed to kmalloc %u bytes
    ", newalloc);
            return -ENOMEM;
        }
    
        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
        rc_map->scan = newscan;
        rc_map->alloc = newalloc;
        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
        kfree(oldscan);
        return 0;
    }
    
    /**
     * ir_update_mapping() - set a keycode in the scancode->keycode table
     * @dev:    the struct rc_dev device descriptor
     * @rc_map:    scancode table to be adjusted
     * @index:    index of the mapping that needs to be updated
     * @keycode:    the desired keycode
     * @return:    previous keycode assigned to the mapping
     *
     * This routine is used to update scancode->keycode mapping at given
     * position.
     */
    static unsigned int ir_update_mapping(struct rc_dev *dev,
                          struct rc_map *rc_map,
                          unsigned int index,
                          unsigned int new_keycode)
    {
        int old_keycode = rc_map->scan[index].keycode;
        int i;
    
        /* Did the user wish to remove the mapping? */
        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
            IR_dprintk(1, "#%d: Deleting scan 0x%04x
    ",
                   index, rc_map->scan[index].scancode);
            rc_map->len--;
            memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
                (rc_map->len - index) * sizeof(struct rc_map_table));
        } else {
            IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x
    ",
                   index,
                   old_keycode == KEY_RESERVED ? "New" : "Replacing",
                   rc_map->scan[index].scancode, new_keycode);
            rc_map->scan[index].keycode = new_keycode;
            __set_bit(new_keycode, dev->input_dev->keybit);
        }
    
        if (old_keycode != KEY_RESERVED) {
            /* A previous mapping was updated... */
            __clear_bit(old_keycode, dev->input_dev->keybit);
            /* ... but another scancode might use the same keycode */
            for (i = 0; i < rc_map->len; i++) {
                if (rc_map->scan[i].keycode == old_keycode) {
                    __set_bit(old_keycode, dev->input_dev->keybit);
                    break;
                }
            }
    
            /* Possibly shrink the keytable, failure is not a problem */
            ir_resize_table(rc_map, GFP_ATOMIC);
        }
    
        return old_keycode;
    }
    
    /**
     * ir_establish_scancode() - set a keycode in the scancode->keycode table
     * @dev:    the struct rc_dev device descriptor
     * @rc_map:    scancode table to be searched
     * @scancode:    the desired scancode
     * @resize:    controls whether we allowed to resize the table to
     *        accommodate not yet present scancodes
     * @return:    index of the mapping containing scancode in question
     *        or -1U in case of failure.
     *
     * This routine is used to locate given scancode in rc_map.
     * If scancode is not yet present the routine will allocate a new slot
     * for it.
     */
    static unsigned int ir_establish_scancode(struct rc_dev *dev,
                          struct rc_map *rc_map,
                          unsigned int scancode,
                          bool resize)
    {
        unsigned int i;
    
        /*
         * Unfortunately, some hardware-based IR decoders don't provide
         * all bits for the complete IR code. In general, they provide only
         * the command part of the IR code. Yet, as it is possible to replace
         * the provided IR with another one, it is needed to allow loading
         * IR tables from other remotes. So, we support specifying a mask to
         * indicate the valid bits of the scancodes.
         */
        if (dev->scanmask)
            scancode &= dev->scanmask;
    
        /* First check if we already have a mapping for this ir command */
        for (i = 0; i < rc_map->len; i++) {
            if (rc_map->scan[i].scancode == scancode)
                return i;
    
            /* Keytable is sorted from lowest to highest scancode */
            if (rc_map->scan[i].scancode >= scancode)
                break;
        }
    
        /* No previous mapping found, we might need to grow the table */
        if (rc_map->size == rc_map->len) {
            if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
                return -1U;
        }
    
        /* i is the proper index to insert our new keycode */
        if (i < rc_map->len)
            memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
                (rc_map->len - i) * sizeof(struct rc_map_table));
        rc_map->scan[i].scancode = scancode;
        rc_map->scan[i].keycode = KEY_RESERVED;
        rc_map->len++;
    
        return i;
    }
    
    /**
     * ir_setkeycode() - set a keycode in the scancode->keycode table
     * @idev:    the struct input_dev device descriptor
     * @scancode:    the desired scancode
     * @keycode:    result
     * @return:    -EINVAL if the keycode could not be inserted, otherwise zero.
     *
     * This routine is used to handle evdev EVIOCSKEY ioctl.
     */
    static int ir_setkeycode(struct input_dev *idev,
                 const struct input_keymap_entry *ke,
                 unsigned int *old_keycode)
    {
        struct rc_dev *rdev = input_get_drvdata(idev);
        struct rc_map *rc_map = &rdev->rc_map;
        unsigned int index;
        unsigned int scancode;
        int retval = 0;
        unsigned long flags;
    
        spin_lock_irqsave(&rc_map->lock, flags);
    
        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
            index = ke->index;
            if (index >= rc_map->len) {
                retval = -EINVAL;
                goto out;
            }
        } else {
            retval = input_scancode_to_scalar(ke, &scancode);
            if (retval)
                goto out;
    
            index = ir_establish_scancode(rdev, rc_map, scancode, true);
            if (index >= rc_map->len) {
                retval = -ENOMEM;
                goto out;
            }
        }
    
        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
    
    out:
        spin_unlock_irqrestore(&rc_map->lock, flags);
        return retval;
    }
    
    /**
     * ir_setkeytable() - sets several entries in the scancode->keycode table
     * @dev:    the struct rc_dev device descriptor
     * @to:        the struct rc_map to copy entries to
     * @from:    the struct rc_map to copy entries from
     * @return:    -ENOMEM if all keycodes could not be inserted, otherwise zero.
     *
     * This routine is used to handle table initialization.
     */
    static int ir_setkeytable(struct rc_dev *dev,
                  const struct rc_map *from)
    {
        struct rc_map *rc_map = &dev->rc_map;
        unsigned int i, index;
        int rc;
    
        rc = ir_create_table(rc_map, from->name,
                     from->rc_type, from->size);
        if (rc)
            return rc;
    
        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)
    ",
               rc_map->size, rc_map->alloc);
    
        for (i = 0; i < from->size; i++) {
            index = ir_establish_scancode(dev, rc_map,
                              from->scan[i].scancode, false);
            if (index >= rc_map->len) {
                rc = -ENOMEM;
                break;
            }
    
            ir_update_mapping(dev, rc_map, index,
                      from->scan[i].keycode);
        }
    
        if (rc)
            ir_free_table(rc_map);
    
        return rc;
    }
    
    static int ir_setkeytable_mapping(struct rc_dev *dev,
                  const struct rc_map *from)
    {
        struct rc_map *rc_map = &dev->rc_map;
    
        if(from->mapping)
            rc_map->mapping = from->mapping;;
    
        return 0;
    }
    
    /**
     * ir_lookup_by_scancode() - locate mapping by scancode
     * @rc_map:    the struct rc_map to search
     * @scancode:    scancode to look for in the table
     * @return:    index in the table, -1U if not found
     *
     * This routine performs binary search in RC keykeymap table for
     * given scancode.
     */
    static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
                          unsigned int scancode)
    {
        int start = 0;
        int end = rc_map->len - 1;
        int mid;
    
        while (start <= end) {
            mid = (start + end) / 2;
            if (rc_map->scan[mid].scancode < scancode)
                start = mid + 1;
            else if (rc_map->scan[mid].scancode > scancode)
                end = mid - 1;
            else
                return mid;
        }
    
        return -1U;
    }
    
    /**
     * ir_getkeycode() - get a keycode from the scancode->keycode table
     * @idev:    the struct input_dev device descriptor
     * @scancode:    the desired scancode
     * @keycode:    used to return the keycode, if found, or KEY_RESERVED
     * @return:    always returns zero.
     *
     * This routine is used to handle evdev EVIOCGKEY ioctl.
     */
    static int ir_getkeycode(struct input_dev *idev,
                 struct input_keymap_entry *ke)
    {
        struct rc_dev *rdev = input_get_drvdata(idev);
        struct rc_map *rc_map = &rdev->rc_map;
        struct rc_map_table *entry;
        unsigned long flags;
        unsigned int index;
        unsigned int scancode;
        int retval;
    
        spin_lock_irqsave(&rc_map->lock, flags);
    
        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
            index = ke->index;
        } else {
            retval = input_scancode_to_scalar(ke, &scancode);
            if (retval)
                goto out;
    
            index = ir_lookup_by_scancode(rc_map, scancode);
        }
    
        if (index < rc_map->len) {
            entry = &rc_map->scan[index];
    
            ke->index = index;
            ke->keycode = entry->keycode;
            ke->len = sizeof(entry->scancode);
            memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
    
        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
            /*
             * We do not really know the valid range of scancodes
             * so let's respond with KEY_RESERVED to anything we
             * do not have mapping for [yet].
             */
            ke->index = index;
            ke->keycode = KEY_RESERVED;
        } else {
            retval = -EINVAL;
            goto out;
        }
    
        retval = 0;
    
    out:
        spin_unlock_irqrestore(&rc_map->lock, flags);
        return retval;
    }
    
    /**
     * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
     * @dev:    the struct rc_dev descriptor of the device
     * @scancode:    the scancode to look for
     * @return:    the corresponding keycode, or KEY_RESERVED
     *
     * This routine is used by drivers which need to convert a scancode to a
     * keycode. Normally it should not be used since drivers should have no
     * interest in keycodes.
     */
    u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
    {
        struct rc_map *rc_map = &dev->rc_map;
        unsigned int keycode;
        unsigned int index;
        unsigned long flags;
    
        spin_lock_irqsave(&rc_map->lock, flags);
        if(rc_map->mapping){
            keycode = rc_map->mapping(scancode);
        }else{
            index = ir_lookup_by_scancode(rc_map, scancode);
            keycode = index < rc_map->len ?
                    rc_map->scan[index].keycode : KEY_RESERVED;
        }
        spin_unlock_irqrestore(&rc_map->lock, flags);
    
        if (keycode != KEY_RESERVED)
            IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x
    ",
                   dev->input_name, scancode, keycode);
    
        return keycode;
    }
    EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
    
    /**
     * ir_do_keyup() - internal function to signal the release of a keypress
     * @dev:    the struct rc_dev descriptor of the device
     * @sync:    whether or not to call input_sync
     *
     * This function is used internally to release a keypress, it must be
     * called with keylock held.
     */
    static void ir_do_keyup(struct rc_dev *dev, bool sync)
    {
        if (!dev->keypressed)
            return;
    
        IR_dprintk(1, "keyup key 0x%04x
    ", dev->last_keycode);
        input_report_key(dev->input_dev, dev->last_keycode, 0);
        if (sync)
            input_sync(dev->input_dev);
        dev->keypressed = false;
    }
    
    /**
     * rc_keyup() - signals the release of a keypress
     * @dev:    the struct rc_dev descriptor of the device
     *
     * This routine is used to signal that a key has been released on the
     * remote control.
     */
    void rc_keyup(struct rc_dev *dev)
    {
        unsigned long flags;
    
        spin_lock_irqsave(&dev->keylock, flags);
        ir_do_keyup(dev, true);
        spin_unlock_irqrestore(&dev->keylock, flags);
    }
    EXPORT_SYMBOL_GPL(rc_keyup);
    
    /**
     * ir_timer_keyup() - generates a keyup event after a timeout
     * @cookie:    a pointer to the struct rc_dev for the device
     *
     * This routine will generate a keyup event some time after a keydown event
     * is generated when no further activity has been detected.
     */
    static void ir_timer_keyup(unsigned long cookie)
    {
        struct rc_dev *dev = (struct rc_dev *)cookie;
        unsigned long flags;
    
        /*
         * ir->keyup_jiffies is used to prevent a race condition if a
         * hardware interrupt occurs at this point and the keyup timer
         * event is moved further into the future as a result.
         *
         * The timer will then be reactivated and this function called
         * again in the future. We need to exit gracefully in that case
         * to allow the input subsystem to do its auto-repeat magic or
         * a keyup event might follow immediately after the keydown.
         */
        spin_lock_irqsave(&dev->keylock, flags);
        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
            ir_do_keyup(dev, true);
        spin_unlock_irqrestore(&dev->keylock, flags);
    }
    
    /**
     * rc_repeat() - signals that a key is still pressed
     * @dev:    the struct rc_dev descriptor of the device
     *
     * This routine is used by IR decoders when a repeat message which does
     * not include the necessary bits to reproduce the scancode has been
     * received.
     */
    void rc_repeat(struct rc_dev *dev)
    {
        unsigned long flags;
    
        spin_lock_irqsave(&dev->keylock, flags);
        
    //    input_event(dev->input_dev, EV_ABS, ABS_X, dev->last_scancode);    
        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
    //    input_event(dev->input_dev, EV_REL, REL_X, dev->last_scancode);
        input_sync(dev->input_dev);
    
        if (!dev->keypressed)
            goto out;
    
        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
    
    out:
        spin_unlock_irqrestore(&dev->keylock, flags);
    }
    EXPORT_SYMBOL_GPL(rc_repeat);
    
    /**
     * ir_do_keydown() - internal function to process a keypress
     * @dev:    the struct rc_dev descriptor of the device
     * @scancode:   the scancode of the keypress
     * @keycode:    the keycode of the keypress
     * @toggle:     the toggle value of the keypress
     *
     * This function is used internally to register a keypress, it must be
     * called with keylock held.
     */
    static void ir_do_keydown(struct rc_dev *dev, int scancode,
                  u32 keycode, u8 toggle)
    {
        bool new_event = !dev->keypressed ||
                 dev->last_scancode != scancode ||
                 dev->last_toggle != toggle;
    
        if (new_event && dev->keypressed)
            ir_do_keyup(dev, false);
    
    
    /*
        switch(scancode){
            send_user_event(""KEYCODE_BREAK=128"");
            case 0xD2:    input_event(dev->input_dev, EV_KEY, KEY_PLAY, scancode);
                        break;
            
            case 0x2D:    input_event(dev->input_dev, EV_KEY, KEY_PAUSE, scancode);
                        break;
                
            default:    break;        
            
        }
    */
    
        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
        input_event(dev->input_dev, EV_REL, REL_X, scancode);
    //    input_event(dev->input_dev, EV_ABS, ABS_X, scancode);
    
    
        if (new_event && keycode != KEY_RESERVED) {
            /* Register a keypress */
            dev->keypressed = true;
            dev->last_scancode = scancode;
            dev->last_toggle = toggle;
            dev->last_keycode = keycode;
    
            IR_dprintk(1, "%s: key down event, "
                   "key 0x%04x, scancode 0x%04x
    ",
                   dev->input_name, keycode, scancode);
            input_report_key(dev->input_dev, keycode, 1);
            input_report_rel(dev->input_dev, REL_X, scancode);
        }
    
    
    //    input_report_rel(dev->input_dev, REL_X, scancode);
    
        input_sync(dev->input_dev);
    }
    
    /**
     * rc_keydown() - generates input event for a key press
     * @dev:    the struct rc_dev descriptor of the device
     * @scancode:   the scancode that we're seeking
     * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
     *              support toggle values, this should be set to zero)
     *
     * This routine is used to signal that a key has been pressed on the
     * remote control.
     */
    void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
    {
        unsigned long flags;
        u32 keycode = rc_g_keycode_from_table(dev, scancode);
    
        spin_lock_irqsave(&dev->keylock, flags);
        ir_do_keydown(dev, scancode, keycode, toggle);
    
    
    
    //    __set_bit(ABS_X, gt811_dev->inputdev->absbit);
    
    
    /*
        input_event(dev->input_dev, EV_REL, REL_X, scancode);
        input_report_rel(dev->input_dev, REL_X, scancode);
        input_sync(dev->input_dev);
    */
    /*
        input_event(dev->input_dev, EV_ABS, ABS_X, scancode);
        input_report_rel(dev->input_dev, ABS_X, scancode);
        input_sync(dev->input_dev);    
    */    
        
        printk("rc_keydown  success !
    ");
    
    
        if (dev->keypressed) {
            dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
            mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
        }
        spin_unlock_irqrestore(&dev->keylock, flags);
    }
    EXPORT_SYMBOL_GPL(rc_keydown);
    
    /**
     * rc_keydown_notimeout() - generates input event for a key press without
     *                          an automatic keyup event at a later time
     * @dev:    the struct rc_dev descriptor of the device
     * @scancode:   the scancode that we're seeking
     * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
     *              support toggle values, this should be set to zero)
     *
     * This routine is used to signal that a key has been pressed on the
     * remote control. The driver must manually call rc_keyup() at a later stage.
     */
    void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
    {
        unsigned long flags;
        u32 keycode = rc_g_keycode_from_table(dev, scancode);
    
        spin_lock_irqsave(&dev->keylock, flags);
        ir_do_keydown(dev, scancode, keycode, toggle);
        spin_unlock_irqrestore(&dev->keylock, flags);
    }
    EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
    
    static int ir_open(struct input_dev *idev)
    {
        struct rc_dev *rdev = input_get_drvdata(idev);
    
        return rdev->open(rdev);
    }
    
    static void ir_close(struct input_dev *idev)
    {
        struct rc_dev *rdev = input_get_drvdata(idev);
    
         if (rdev)
            rdev->close(rdev);
    }
    
    /* class for /sys/class/rc */
    static char *rc_devnode(struct device *dev, umode_t *mode)
    {
        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
    }
    
    static struct class rc_class = {
        .name        = "rc",
        .devnode    = rc_devnode,
    };
    
    /*
     * These are the protocol textual descriptions that are
     * used by the sysfs protocols file. Note that the order
     * of the entries is relevant.
     */
    static struct {
        u64    type;
        char    *name;
    } proto_names[] = {
        { RC_BIT_NONE,        "none"        },
        { RC_BIT_OTHER,        "other"        },
        { RC_BIT_UNKNOWN,    "unknown"    },
        { RC_BIT_RC5 |
          RC_BIT_RC5X,        "rc-5"        },
        { RC_BIT_NEC,        "nec"        },
        { RC_BIT_RC6_0 |
          RC_BIT_RC6_6A_20 |
          RC_BIT_RC6_6A_24 |
          RC_BIT_RC6_6A_32 |
          RC_BIT_RC6_MCE,    "rc-6"        },
        { RC_BIT_JVC,        "jvc"        },
        { RC_BIT_SONY12 |
          RC_BIT_SONY15 |
          RC_BIT_SONY20,    "sony"        },
        { RC_BIT_RC5_SZ,    "rc-5-sz"    },
        { RC_BIT_SANYO,        "sanyo"        },
        { RC_BIT_MCE_KBD,    "mce_kbd"    },
        { RC_BIT_LIRC,        "lirc"        },
    };
    
    /**
     * show_protocols() - shows the current IR protocol(s)
     * @device:    the device descriptor
     * @mattr:    the device attribute struct (unused)
     * @buf:    a pointer to the output buffer
     *
     * This routine is a callback routine for input read the IR protocol type(s).
     * it is trigged by reading /sys/class/rc/rc?/protocols.
     * It returns the protocol names of supported protocols.
     * Enabled protocols are printed in brackets.
     *
     * dev->lock is taken to guard against races between device
     * registration, store_protocols and show_protocols.
     */
    static ssize_t show_protocols(struct device *device,
                      struct device_attribute *mattr, char *buf)
    {
        struct rc_dev *dev = to_rc_dev(device);
        u64 allowed, enabled;
        char *tmp = buf;
        int i;
    
        /* Device is being removed */
        if (!dev)
            return -EINVAL;
    
        mutex_lock(&dev->lock);
    
        enabled = dev->enabled_protocols;
        if (dev->driver_type == RC_DRIVER_SCANCODE)
            allowed = dev->allowed_protos;
        else if (dev->raw)
            allowed = ir_raw_get_allowed_protocols();
        else {
            mutex_unlock(&dev->lock);
            return -ENODEV;
        }
    
        IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx
    ",
               (long long)allowed,
               (long long)enabled);
    
        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
            if (allowed & enabled & proto_names[i].type)
                tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
            else if (allowed & proto_names[i].type)
                tmp += sprintf(tmp, "%s ", proto_names[i].name);
    
            if (allowed & proto_names[i].type)
                allowed &= ~proto_names[i].type;
        }
    
        if (tmp != buf)
            tmp--;
        *tmp = '
    ';
    
        mutex_unlock(&dev->lock);
    
        return tmp + 1 - buf;
    }
    
    /**
     * store_protocols() - changes the current IR protocol(s)
     * @device:    the device descriptor
     * @mattr:    the device attribute struct (unused)
     * @buf:    a pointer to the input buffer
     * @len:    length of the input buffer
     *
     * This routine is for changing the IR protocol type.
     * It is trigged by writing to /sys/class/rc/rc?/protocols.
     * Writing "+proto" will add a protocol to the list of enabled protocols.
     * Writing "-proto" will remove a protocol from the list of enabled protocols.
     * Writing "proto" will enable only "proto".
     * Writing "none" will disable all protocols.
     * Returns -EINVAL if an invalid protocol combination or unknown protocol name
     * is used, otherwise @len.
     *
     * dev->lock is taken to guard against races between device
     * registration, store_protocols and show_protocols.
     */
    static ssize_t store_protocols(struct device *device,
                       struct device_attribute *mattr,
                       const char *data,
                       size_t len)
    {
        struct rc_dev *dev = to_rc_dev(device);
        bool enable, disable;
        const char *tmp;
        u64 type;
        u64 mask;
        int rc, i, count = 0;
        ssize_t ret;
    
        /* Device is being removed */
        if (!dev)
            return -EINVAL;
    
        mutex_lock(&dev->lock);
    
        if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
            IR_dprintk(1, "Protocol switching not supported
    ");
            ret = -EINVAL;
            goto out;
        }
        type = dev->enabled_protocols;
    
        while ((tmp = strsep((char **) &data, " 
    ")) != NULL) {
            if (!*tmp)
                break;
    
            if (*tmp == '+') {
                enable = true;
                disable = false;
                tmp++;
            } else if (*tmp == '-') {
                enable = false;
                disable = true;
                tmp++;
            } else {
                enable = false;
                disable = false;
            }
    
            for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
                if (!strcasecmp(tmp, proto_names[i].name)) {
                    mask = proto_names[i].type;
                    break;
                }
            }
    
            if (i == ARRAY_SIZE(proto_names)) {
                IR_dprintk(1, "Unknown protocol: '%s'
    ", tmp);
                ret = -EINVAL;
                goto out;
            }
    
            count++;
    
            if (enable)
                type |= mask;
            else if (disable)
                type &= ~mask;
            else
                type = mask;
        }
    
        if (!count) {
            IR_dprintk(1, "Protocol not specified
    ");
            ret = -EINVAL;
            goto out;
        }
    
        if (dev->change_protocol) {
            rc = dev->change_protocol(dev, &type);
            if (rc < 0) {
                IR_dprintk(1, "Error setting protocols to 0x%llx
    ",
                       (long long)type);
                ret = -EINVAL;
                goto out;
            }
        }
    
        dev->enabled_protocols = type;
        IR_dprintk(1, "Current protocol(s): 0x%llx
    ",
               (long long)type);
    
        ret = len;
    
    out:
        mutex_unlock(&dev->lock);
        return ret;
    }
    
    static void rc_dev_release(struct device *device)
    {
    }
    
    #define ADD_HOTPLUG_VAR(fmt, val...)                    
        do {                                
            int err = add_uevent_var(env, fmt, val);        
            if (err)                        
                return err;                    
        } while (0)
    
    static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
    {
        struct rc_dev *dev = to_rc_dev(device);
    
        if (!dev || !dev->input_dev)
            return -ENODEV;
    
        if (dev->rc_map.name)
            ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
        if (dev->driver_name)
            ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
    
        return 0;
    }
    
    /*
     * Static device attribute struct with the sysfs attributes for IR's
     */
    static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
               show_protocols, store_protocols);
    
    static struct attribute *rc_dev_attrs[] = {
        &dev_attr_protocols.attr,
        NULL,
    };
    
    static struct attribute_group rc_dev_attr_grp = {
        .attrs    = rc_dev_attrs,
    };
    
    static const struct attribute_group *rc_dev_attr_groups[] = {
        &rc_dev_attr_grp,
        NULL
    };
    
    static struct device_type rc_dev_type = {
        .groups        = rc_dev_attr_groups,
        .release    = rc_dev_release,
        .uevent        = rc_dev_uevent,
    };
    
    struct rc_dev *rc_allocate_device(void)
    {
        struct rc_dev *dev;
    
        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
        if (!dev)
            return NULL;
    
        dev->input_dev = input_allocate_device();
        if (!dev->input_dev) {
            kfree(dev);
            return NULL;
        }
    
        dev->input_dev->getkeycode = ir_getkeycode;
        dev->input_dev->setkeycode = ir_setkeycode;
        input_set_drvdata(dev->input_dev, dev);
    
        spin_lock_init(&dev->rc_map.lock);
        spin_lock_init(&dev->keylock);
        mutex_init(&dev->lock);
        setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
    
        dev->dev.type = &rc_dev_type;
        dev->dev.class = &rc_class;
        device_initialize(&dev->dev);
    
        __module_get(THIS_MODULE);
        return dev;
    }
    EXPORT_SYMBOL_GPL(rc_allocate_device);
    
    void rc_free_device(struct rc_dev *dev)
    {
        if (!dev)
            return;
    
        if (dev->input_dev)
            input_free_device(dev->input_dev);
    
        put_device(&dev->dev);
    
        kfree(dev);
        module_put(THIS_MODULE);
    }
    EXPORT_SYMBOL_GPL(rc_free_device);
    
    int rc_register_device(struct rc_dev *dev)
    {
        static bool raw_init = false; /* raw decoders loaded? */
        static atomic_t devno = ATOMIC_INIT(0);
        struct rc_map *rc_map;
        const char *path;
        int rc;
    
        if (!dev || !dev->map_name)
            return -EINVAL;
    
        rc_map = rc_map_get(dev->map_name);
        if (!rc_map)
            rc_map = rc_map_get(RC_MAP_EMPTY);
        if (!rc_map)
            return -EINVAL;
        if ((!rc_map->mapping) && (!rc_map->scan || rc_map->size == 0))
            return -EINVAL;
    
        set_bit(EV_KEY, dev->input_dev->evbit);
        set_bit(EV_REP, dev->input_dev->evbit);
        set_bit(EV_MSC, dev->input_dev->evbit);
        set_bit(MSC_SCAN, dev->input_dev->mscbit);
    //    set_bit(EV_REL, dev->input_dev->evbit);    
    //    set_bit(EV_ABS, dev->input_dev->absbit);
    //    set_bit(EV_REL, dev->input_dev->relbit);    
    
    //    __set_bit(EV_REL, dev->input_dev->relbit);
    
        if (dev->open)
            dev->input_dev->open = ir_open;
        if (dev->close)
            dev->input_dev->close = ir_close;
    
        /*
         * Take the lock here, as the device sysfs node will appear
         * when device_add() is called, which may trigger an ir-keytable udev
         * rule, which will in turn call show_protocols and access
         * dev->enabled_protocols before it has been initialized.
         */
        mutex_lock(&dev->lock);
    
        dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
        dev_set_name(&dev->dev, "rc%ld", dev->devno);
        dev_set_drvdata(&dev->dev, dev);
        rc = device_add(&dev->dev);
        if (rc)
            goto out_unlock;
    
        ir_setkeytable_mapping(dev, rc_map);
    
        rc = ir_setkeytable(dev, rc_map);
        if (rc)
            goto out_dev;
    
        dev->input_dev->dev.parent = &dev->dev;
        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
        dev->input_dev->phys = dev->input_phys;
        dev->input_dev->name = dev->input_name;
        rc = input_register_device(dev->input_dev);
        if (rc)
            goto out_table;
    
        /*
         * Default delay of 250ms is too short for some protocols, especially
         * since the timeout is currently set to 250ms. Increase it to 500ms,
         * to avoid wrong repetition of the keycodes. Note that this must be
         * set after the call to input_register_device().
         */
        dev->input_dev->rep[REP_DELAY] = 500;
    
        /*
         * As a repeat event on protocols like RC-5 and NEC take as long as
         * 110/114ms, using 33ms as a repeat period is not the right thing
         * to do.
         */
        dev->input_dev->rep[REP_PERIOD] = 125;
    
        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
        printk(KERN_INFO "%s: %s as %s
    ",
            dev_name(&dev->dev),
            dev->input_name ? dev->input_name : "Unspecified device",
            path ? path : "N/A");
        kfree(path);
    
        if (dev->driver_type == RC_DRIVER_IR_RAW) {
            /* Load raw decoders, if they aren't already */
            if (!raw_init) {
                IR_dprintk(1, "Loading raw decoders
    ");
                ir_raw_init();
                raw_init = true;
            }
            rc = ir_raw_event_register(dev);
            if (rc < 0)
                goto out_input;
        }
    
        if (dev->change_protocol) {
            u64 rc_type = (1 << rc_map->rc_type);
            rc = dev->change_protocol(dev, &rc_type);
            if (rc < 0)
                goto out_raw;
            dev->enabled_protocols = rc_type;
        }
    
        mutex_unlock(&dev->lock);
    
        IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)
    ",
               dev->devno,
               dev->driver_name ? dev->driver_name : "unknown",
               rc_map->name ? rc_map->name : "unknown",
               dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
    
        return 0;
    
    out_raw:
        if (dev->driver_type == RC_DRIVER_IR_RAW)
            ir_raw_event_unregister(dev);
    out_input:
        input_unregister_device(dev->input_dev);
        dev->input_dev = NULL;
    out_table:
        ir_free_table(&dev->rc_map);
    out_dev:
        device_del(&dev->dev);
    out_unlock:
        mutex_unlock(&dev->lock);
        return rc;
    }
    EXPORT_SYMBOL_GPL(rc_register_device);
    
    void rc_unregister_device(struct rc_dev *dev)
    {
        if (!dev)
            return;
    
        del_timer_sync(&dev->timer_keyup);
    
        if (dev->driver_type == RC_DRIVER_IR_RAW)
            ir_raw_event_unregister(dev);
    
        /* Freeing the table should also call the stop callback */
        ir_free_table(&dev->rc_map);
        IR_dprintk(1, "Freed keycode table
    ");
    
        input_unregister_device(dev->input_dev);
        dev->input_dev = NULL;
    
        device_del(&dev->dev);
    
        rc_free_device(dev);
    }
    
    EXPORT_SYMBOL_GPL(rc_unregister_device);
    
    /*
     * Init/exit code for the module. Basically, creates/removes /sys/class/rc
     */
    
    static int __init rc_core_init(void)
    {
        int rc = class_register(&rc_class);
        if (rc) {
            printk(KERN_ERR "rc_core: unable to register rc class
    ");
            return rc;
        }
    
        rc_map_register(&empty_map);
    
        return 0;
    }
    
    static void __exit rc_core_exit(void)
    {
        class_unregister(&rc_class);
        rc_map_unregister(&empty_map);
    }
    
    subsys_initcall(rc_core_init);
    module_exit(rc_core_exit);
    
    int rc_core_debug;    /* ir_debug level (0,1,2) */
    EXPORT_SYMBOL_GPL(rc_core_debug);
    module_param_named(debug, rc_core_debug, int, 0644);
    
    MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
    MODULE_LICENSE("GPL");

    笔记:


    https://www.cnblogs.com/zzb-Dream-90Time/p/7808518.html

     

  • 相关阅读:
    nginx技术总结
    剑指offer学习摘录面试2 单例模式 JoannaIn
    visual stadio 编译c++文件 JoannaIn
    Git生成SSH密钥
    spring——自动装配【非常详细】
    @Target:注解的作用目标
    SSH客户端神器之 MobaXterm
    Maven 最全教程,看了必懂,99% 的人都收藏了!
    必须了解的MySQL三大日志:binlog、redo log和undo log
    MyBatis批量插入几千条数据,请慎用foreach
  • 原文地址:https://www.cnblogs.com/panda-w/p/12148629.html
Copyright © 2020-2023  润新知