• TensorFlow v2.0实现逻辑斯谛回归


    使用TensorFlow v2.0实现逻辑斯谛回归

    此示例使用简单方法来更好地理解训练过程背后的所有机制

    MNIST数据集概览

    此示例使用MNIST手写数字。该数据集包含60,000个用于训练的样本和10,000个用于测试的样本。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到255。

    在此示例中,每个图像将转换为float32,归一化为[0,1],并展平为784个特征(28 * 28)的1维数组。

    mark

    from __future__ import absolute_import,division,print_function
    
    import tensorflow as tf
    import numpy as np
    
    # MNIST 数据集参数
    num_classes = 10 # 数字0-9
    num_features = 784 # 28*28
    
    # 训练参数
    learning_rate = 0.01
    training_steps = 1000
    batch_size = 256
    display_step = 50
    
    # 准备MNIST数据
    from tensorflow.keras.datasets import mnist
    (x_train, y_train),(x_test,y_test) = mnist.load_data()
    # 转换为float32
    x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)
    # 将图像平铺成784个特征的一维向量(28*28)
    x_train, x_test = x_train.reshape([-1, num_features]), x_test.reshape([-1, num_features])
    # 将像素值从[0,255]归一化为[0,1]
    x_train,x_test = x_train / 255, x_test / 255
    
    # 使用tf.data api 对数据随机分布和批处理
    train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
    train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)
    
    # 权值矩阵形状[784,10],28 * 28图像特征数和类别数目
    W = tf.Variable(tf.ones([num_features, num_classes]), name="weight")
    # 偏置形状[10], 类别数目
    b = tf.Variable(tf.zeros([num_classes]), name="bias")
    
    # 逻辑斯谛回归(Wx b)
    def logistic_regression(x):
        #应用softmax将logits标准化为概率分布
        return tf.nn.softmax(tf.matmul(x,W)   b)
    
    # 交叉熵损失函数
    def cross_entropy(y_pred, y_true):
        # 将标签编码为一个独热编码向量
        y_true = tf.one_hot(y_true, depth=num_classes)
        # 压缩预测值以避免log(0)错误
        y_pred = tf.clip_by_value(y_pred, 1e-9, 1.)
        # 计算交叉熵
        return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred)))
    
    # 准确率度量
    def accuracy(y_pred, y_true):
        # 预测的类别是预测向量中最高分的索引(即argmax)
        correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))
        return tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # 随机梯度下降优化器
    optimizer = tf.optimizers.SGD(learning_rate)
    
    # 优化过程
    def run_optimization(x, y):
        #将计算封装在GradientTape中以实现自动微分
        with tf.GradientTape() as g:
            pred = logistic_regression(x)
            loss = cross_entropy(pred, y)
            
        # 计算梯度
        gradients = g.gradient(loss, [W, b])
        
        # 根据gradients更新 W 和 b
        optimizer.apply_gradients(zip(gradients, [W, b]))
    
    # 针对给定训练步骤数开始训练
    for step, (batch_x,batch_y) in enumerate(train_data.take(training_steps), 1):
        # 运行优化以更新W和b值
        run_optimization(batch_x, batch_y)
        
        if step % display_step == 0:
            pred = logistic_regression(batch_x)
            loss = cross_entropy(pred, batch_y)
            acc = accuracy(pred, batch_y)
            print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc))
    

    output:

    step: 50, loss: 608.584717, accuracy: 0.824219
    step: 100, loss: 828.206482, accuracy: 0.765625
    step: 150, loss: 716.329407, accuracy: 0.746094
    step: 200, loss: 584.887634, accuracy: 0.820312
    step: 250, loss: 472.098114, accuracy: 0.871094
    step: 300, loss: 621.834595, accuracy: 0.832031
    step: 350, loss: 567.288818, accuracy: 0.714844
    step: 400, loss: 489.062988, accuracy: 0.847656
    step: 450, loss: 496.466675, accuracy: 0.843750
    step: 500, loss: 465.342224, accuracy: 0.875000
    step: 550, loss: 586.347168, accuracy: 0.855469
    step: 600, loss: 95.233109, accuracy: 0.906250
    step: 650, loss: 88.136490, accuracy: 0.910156
    step: 700, loss: 67.170349, accuracy: 0.937500
    step: 750, loss: 79.673691, accuracy: 0.921875
    step: 800, loss: 112.844872, accuracy: 0.914062
    step: 850, loss: 92.789581, accuracy: 0.894531
    step: 900, loss: 80.116165, accuracy: 0.921875
    step: 950, loss: 45.706650, accuracy: 0.925781
    step: 1000, loss: 72.986969, accuracy: 0.925781
    
    # 在验证集上测试模型
    pred = logistic_regression(x_test)
    print("Test Accuracy: %f" % accuracy(pred, y_test))
    

    output:

    Test Accuracy: 0.901100
    
    # 可视化预测
    import matplotlib.pyplot as plt
    
    # 在验证集上中预测5张图片
    n_images = 5
    test_images = x_test[:n_images]
    predictions = logistic_regression(test_images)
    
    # 可视化图片和模型预测结果
    for i in range(n_images):
        plt.imshow(np.reshape(test_images[i],[28,28]), cmap='gray')
        plt.show()
        print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))
    

    output:

    Model prediction: 7
    

    Model prediction: 2
    

    Model prediction: 1
    

    Model prediction: 0
    

    Model prediction: 4
    

    欢迎关注磐创博客资源汇总站:
    http://docs.panchuang.net/

    欢迎关注PyTorch官方中文教程站:
    http://pytorch.panchuang.net/

  • 相关阅读:
    github单独下载一个文件夹
    搭建github服务器
    ssh xshell 连接在vim中无法用 ctrl+insert 复制黏贴
    centos 下文件夹共享
    rootkit 内核函数hook
    centos dhcp获取不到ip解决方法 Bringing up interface eth0: Device eth0 does not seem to be present,delaying initialization.
    ipc 入侵步骤
    linux 无交互添加用户设置密码
    C++笔记
    感谢路遥 感谢平凡的世界
  • 原文地址:https://www.cnblogs.com/panchuangai/p/12567960.html
Copyright © 2020-2023  润新知