• 联邦学习


    视频:链接

    介绍

    联邦学习是一种不需要收集各数据拥有方所有的数据,便能协作地训练一个模型的机器学习过程

    旨在建立一个基于分散数据集的联邦机器学习模型。在模型训练过程中,隐私数据不离开本地,各方仅交换模型相关的信息或加密的数据,已训练好的联邦学习模型可以置于联邦学习系统的各参与方,也可以在多方之间共享。

    联邦学习结合安全多方计算、同态加密、差分隐私等多种隐私计算技术,在保护数据安全的同时实现数据价值的共享。

    目前,联邦学习已经应用在计算机视觉、自然语言处理(NLP)、推荐系统等领域,在金融、医疗、教育等领域均得到了广泛的应用。

    工作流程

     

    存在的问题

    在联邦学习参数传递过程中,为了支持参数可以在密钥下进行无损的计算,需要使用同态加密,这就会带来计算量和传输量的剧增

    解决方法

    1、优化算法

    2、异构系统

    (1)将复杂运算转移至硬件设备执行

    (2)硬件计算资源丰富

    (3)支持高并发的计算

    GPU

    参考:链接

    FPGA

    是一种主流的可编程逻辑器件

    开发者使用硬件描述语言构建硬件电路,通过编译器,将电路设计布局在FPGA芯片上,最终通过文件烧写,修改FPGA芯片内部电路

    在通信、数字信号处理、视频图像处理、IC验证等领域,有着广泛的应用

    目前主流的FPGA供应商为XiLinx和Intel

    难点

    模密和模乘运算量最大

    模密

    平方乘:将模运算转成乘法运算

    模乘

    通过蒙哥马利域将取模运算转换成移位运算

    该方法的难点:

    作者: Pam

    出处: https://www.cnblogs.com/pam-sh/>

    关于作者:网安在读

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出, 原文链接 如有问题, 可邮件(mir_soh@163.com)咨询.

  • 相关阅读:
    连续奇数
    50:数根
    38:花生采摘
    素数对
    17:字符串判等
    2702:密码翻译
    27:单词翻转
    15:整理药名
    12:加密的病历单
    09:密码翻译
  • 原文地址:https://www.cnblogs.com/pam-sh/p/15611866.html
Copyright © 2020-2023  润新知