【0】README
0.1) 本文文字描述部分转自 数据结构与算法分析, 旨在理解 优先队列——左式堆 的基础知识;
0.2) 本文核心思路均为原创, 源代码部分借鉴 数据结构与算法分析 ;
0.3) for original source code, please visit https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter6/p145_leftist_heap
1)相关定义
-
1.1)零路径长度定义: 到没有两个儿子的节点最短距离, 即零路径长Npl 定义为 从 X 到一个没有两个儿子的 节点的最短路径的长;也即, 非叶子节点到叶子节点的最少边数,其中NULL的零路径长为-1, 叶子节点的零路径长为0;(干货——零路径长的定义—— 非叶子节点到叶子节点的最少边数,非常重要,因为左式堆的定义是基于零路径长的定义的)
-
1.2)左式堆定义:一棵具有堆序性质的二叉树 + 零路径长:左儿子 ≧ 右儿子 + 父节点 = min{儿子} +1;(干货——左式堆的定义是建立在具有堆序性的二叉树上,而不是二叉堆上)
2)merge操作原则: 根值大的堆与根值小的堆的右子堆合并;(干货——merge操作原则)
3)merge操作存在的三种情况(设堆H1的根值小于H2)
- case1) H1只有一个节点;
- case2) H1根无右孩子;
- case3) H1根有右孩子;
补充(Complementary):左式堆合并操作详解(merge)
左式堆合并原则:大根堆H2与小根堆H1的右子堆合并 (干货——左式堆合并原则)
具体分三种情况(设堆H1的根值小于H2)
- case1)H1只有一个节点(只有它自己而已): H1只有一个节点,若出现不满足 零路径长:左儿子≧右儿子,交换左右孩子;
- Attention)上例中(中间所示堆),左儿子的零路径长为-1, 而右儿子的零路径长为0,所以不满足左式堆的条件, 需要交换左右孩子;
- case2)H1根无右孩子: H1根无右孩子,若出现不满足:零路径长:左儿子≧右儿子,需要交换左右孩子。
- Attention)上例中(中间所示堆),左儿子的零路径长为0, 而右儿子的零路径长为1,所以不满足左式堆的条件,需要交换;
- case3)H1根有右孩子:
- step1)截取H1的右子堆R1, 和截取H2的右子堆R2;
- step2)将R1 与 R2进行merge操作得到H3, 且取R1和R2中较小根作为新根; (Attention: 现在你将看到,截取后的H1 和 H2, 以及新生成的H3 都是 case2);
- step3)比较H3的左右孩子,是否满足左式堆要求,如果不满足则交换左右孩子;
- step4)将H3与没有右子堆的H1进行merge操作,也即最后将case3 转换为了 case2;
Conclusion) 现在才知道,左式堆的merge操作其实是一个递归的过程, 看如下解析; (干货——这是最后解析merge操作啦)
Attention once again)
- A1)左式堆是建立在具有堆序性的二叉树上;
- A2)左式堆是建立在零路径长上;
- A3)左式堆的核心操作是 merge, 无论insert 还是 deleteMin 都是基于 merge操作的;
- A4)左式堆的merge操作执行后,还要update 左式堆根节点的零路径长, 左式堆根节点的零路径长 == min{儿子的零路径长} +1;
- A5) update 后, 还需要比较 左右零路径长 是否满足左式堆的定义, 如果不满足,还需要交换左式堆根节点的左右孩子;
source code at a glance )
#include "leftist_heap.h" // swap the left and the right in priority queue. void swap(PriorityQueue h1) { PriorityQueue temp; temp = h1->left; h1->left = h1->right; h1->right = temp; } // analog print directories and files name in the BinaryTree, which involves postorder traversal. void printPreorder(int depth, TreeNode root) { int i; if(root) { for(i = 0; i < depth; i++) printf(" "); printf("%d ", root->value); printPreorder(depth + 1, root->left); // Attention: there's difference between traversing binary tree and common tree. printPreorder(depth + 1, root->right); } else { for(i = 0; i < depth; i++) printf(" "); printf("NULL "); } } // insert an element with value into the priority queue. PriorityQueue insert(ElementType value, PriorityQueue pq) { TreeNode node; node = (TreeNode)malloc(sizeof(struct TreeNode)); if(!node) { Error("failed inserting, for out of space !"); return pq; } node->left = NULL; node->right = NULL; node->nullPathLen = 0; node->value = value; if(pq == NULL) // means that just only creating a node with value. { return node; } else { return merge(node, pq); } } // return the minimal between a and b. int minimal(int a, int b) { return a > b ? b : a; } // merge the priority queue h1 and h2. PriorityQueue merge(PriorityQueue h1, PriorityQueue h2) { if(h1 == NULL) { return h2; } else if(h2 == NULL) { return h1; } if(h1->value > h2->value) { return innerMerge(h2, h1); } else { return innerMerge(h1, h2); } } // merge the priority queue h1 and h2. PriorityQueue innerMerge(PriorityQueue h1, PriorityQueue h2) { if(h1->left == NULL) { h1->left = h2; } else { h1->right = merge(h1->right, h2); } // update the null path length if(h1->right == NULL) { h1->nullPathLen = 0; } else { h1->nullPathLen = minimal(h1->left->nullPathLen, h1->right->nullPathLen) + 1; // exchange the left and the right if(h1->left->nullPathLen < h1->right->nullPathLen) { swap(h1); } } return h1; } // delete the minimal element in the priority queue. PriorityQueue deleteMin(PriorityQueue h1) { PriorityQueue left; PriorityQueue right; if(!h1) { Error("failed deleteMin, for the root doesn't point to any position!"); return NULL; } left = h1->left; right = h1->right; free(h1); return merge(left, right); } int main() { PriorityQueue h1; PriorityQueue h2; int data[] = {21, 10, 23, 14, 3, 26, 17, 8}; int data2[] = {18, 12, 33, 24, 6, 37, 7, 18}; int i; h1 = insert(data[0], NULL); for(i=1; i<8; i++) { h1 = insert(data[i], h1); } printf(" === after the leftist heap h1 is merged=== "); printPreorder(1, h1); h2 = insert(data2[0], NULL); for(i=1; i<8; i++) { h2 = insert(data2[i], h2); } printf(" === after the leftist heap h2 is merged=== "); printPreorder(1, h2); h1 = merge(h1, h2); printf(" === after both h1 and h2 are merged=== "); printPreorder(1, h1); h1 = deleteMin(h1); printf(" === after executing deleteMin operation === "); printPreorder(1, h1); return 0; }
printing results are as follows)
Attention for analog between results and the 2 images above.