single shot multibox detectior
一、SSD重要参数设置
在ssd_vgg_300.py文件中初始化重要的网络参数,主要有用于生成默认框的特征层,每层默认框的默认尺寸以及长宽比例:
1 # Copyright 2016 Paul Balanca. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Definition of 300 VGG-based SSD network. 16 17 This model was initially introduced in: 18 SSD: Single Shot MultiBox Detector 19 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, 20 Cheng-Yang Fu, Alexander C. Berg 21 https://arxiv.org/abs/1512.02325 22 23 Two variants of the model are defined: the 300x300 and 512x512 models, the 24 latter obtaining a slightly better accuracy on Pascal VOC. 25 26 Usage: 27 with slim.arg_scope(ssd_vgg.ssd_vgg()): 28 outputs, end_points = ssd_vgg.ssd_vgg(inputs) 29 30 This network port of the original Caffe model. The padding in TF and Caffe 31 is slightly different, and can lead to severe accuracy drop(精度严重下降) if not taken care 32 in a correct way! 33 34 In Caffe, the output size of convolution and pooling layers are computing as 35 following: h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1 36 37 Nevertheless(然而), there is a subtle(微妙的) difference between both for stride > 1. In 38 the case of convolution(在卷积的情况下): 39 top_size = floor((bottom_size + 2*pad - kernel_size) / stride) + 1 40 whereas for pooling: 41 top_size = ceil((bottom_size + 2*pad - kernel_size) / stride) + 1 42 Hence implicitely allowing some additional padding even if pad = 0(隐含的允许一些额外的填充). This 43 behaviour explains why pooling with stride and kernel of size 2 are behaving 44 the same way in TensorFlow and Caffe. 45 46 Nevertheless, this is not the case anymore for other kernel sizes()对于其他kernel,情况就不同了, hence 47 motivating the use of special padding layer for controlling these side-effects.(鼓励使用特殊的填充层来控制这种副作用) 48 49 @@ssd_vgg_300 50 """ 51 import math 52 from collections import namedtuple 53 54 import numpy as np 55 import tensorflow as tf 56 57 import tf_extended as tfe 58 from nets import custom_layers 59 from nets import ssd_common 60 61 slim = tf.contrib.slim 62 63 64 # =========================================================================== # 65 # SSD class definition. 66 # =========================================================================== # 67 #collections模块的namedtuple子类不仅可以使用item的index访问item, 68 # 还可以通过item的name进行访问可以将namedtuple理解为c中的struct结构, 69 # 其首先将各个item命名,然后对每个item赋予数据 70 # nametuple(tuple名字,域名) 71 SSDParams = namedtuple('SSDParameters', ['img_shape', #输入图像大小 72 'num_classes', #类+1(背景) 73 'no_annotation_label', #无标注标签???? 74 'feat_layers', #特征层 75 'feat_shapes', #特征层形状 76 'anchor_size_bounds', #锚点框大小上下边界,相对于原图的比例值 77 'anchor_sizes', #初始锚点框尺寸 78 'anchor_ratios', #锚点框长宽比 79 'anchor_steps', #feature map相对于原图的缩小倍数,后面会解释 80 'anchor_offset', #锚点框中心的偏移 81 'normalizations', #是否正则化 82 'prior_scaling' ##特征图上每个目标与参考框间的尺寸缩放(y,x,h,w)解码时用到 83 ]) 84 85 86 class SSDNet(object): 87 """Implementation of the SSD VGG-based 300 network. 88 89 The default features layers with 300x300 image input are: 90 conv4 ==> 38 x 38 91 conv7 ==> 19 x 19 92 conv8 ==> 10 x 10 93 conv9 ==> 5 x 5 94 conv10 ==> 3 x 3 95 conv11 ==> 1 x 1 96 The default image size used to train this network is 300x300. 97 """ 98 default_params = SSDParams( #默认参数 99 img_shape=(300, 300), 100 num_classes=21, #类数 + 1(背景) 101 no_annotation_label=21, #同上 102 feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'], #特征层名字 103 feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)], #特征层尺寸 104 anchor_size_bounds=[0.15, 0.90], #第一层feature map的default box缩放比例Sk,大小为:300x0.15,300x0.9 105 # anchor_size_bounds=[0.20, 0.90], #论文中是300x0.2,300x0.9 106 107 #anchor的大小,一共6个比例,下面的是原图根据比例计算后的得到的实际anchor大小 108 #4,6,6,6,4,4(每层feature map的dafault box的个数) 109 #长宽都是有计算公式的,得到Sk后,通过公式得到h,w 110 anchor_sizes=[(21., 45.), #h,w 111 (45., 99.), 112 (99., 153.), 113 (153., 207.), 114 (207., 261.), 115 (261., 315.)], #越小的anchor box,得到的信息越大,这个是相对于原图的大小,越来越大 116 # anchor_sizes=[(30., 60.), 117 # (60., 111.), 118 # (111., 162.), 119 # (162., 213.), 120 # (213., 264.), 121 # (264., 315.)], 122 123 ##每个特征层上的每个特征点预测的box长宽比及数量,例如:[2, .5]:(1:1)、(2:1)、(1:2)、(1:1),这里是把重复的省去了 124 #实际上是有4个default box的 125 anchor_ratios=[[2, .5], #block4: def_boxes:4 126 [2, .5, 3, 1./3], #def_boxes:6 (ratios中的4个+默认的1:1+额外增加的一个(S'k)=6) 127 [2, .5, 3, 1./3], #def_boxes:6 128 [2, .5, 3, 1./3], #def_boxes:6 129 [2, .5], #def_boxes:4 130 [2, .5]], #def_boxes:4 131 anchor_steps=[8, 16, 32, 64, 100, 300], #8x38=304,16x19=304,32x10=320,64x5=320,100x3=300,1x300=300 132 anchor_offset=0.5, 133 #是否归一化,大于0则进行,否则不做归一化; 134 # 目前看来只对block_4进行正则化,因为该层比较靠前,其norm(范数)较大,需做L2正则化 135 # (仅仅对每个像素在channel维度做归一化)以保证和后面检测层差异不是很大; 136 normalizations=[20, -1, -1, -1, -1, -1], 137 prior_scaling=[0.1, 0.1, 0.2, 0.2] #特征图上每个目标与参考框间的尺寸缩放(y,x,h,w)解码时用到 138 ) 139 140 def __init__(self, params=None): #网络参数初始化 141 """ 142 Init the SSD net with some parameters. Use the default ones if none provided. 143 """ 144 if isinstance(params, SSDParams): #是否有参数输入,是则用输入的,否则使用默认的 145 self.params = params #isinstance是python的內建函数,如果参数1与参数2的类型相同则返回true; 146 else: # 147 self.params = SSDNet.default_params 148 149 # ======================================================================= # 150 #定义网络模型 151 def net(self, inputs, 152 is_training=True, #是否训练 153 update_feat_shapes=True, #是否更新特征层的尺寸 154 dropout_keep_prob=0.5, ##dropout=0.5 155 prediction_fn=slim.softmax, #采用softmax预测结果 156 reuse=None, 157 scope='ssd_300_vgg'): #网络名:ssd_300_vgg(基础网络时VGG,输入训练图像size是300x300) 158 """ 159 SSD network definition. 160 """ 161 #网络输入参数 162 r = ssd_net(inputs, 163 num_classes=self.params.num_classes, 164 feat_layers=self.params.feat_layers, 165 anchor_sizes=self.params.anchor_sizes, 166 anchor_ratios=self.params.anchor_ratios, 167 normalizations=self.params.normalizations, 168 is_training=is_training, 169 dropout_keep_prob=dropout_keep_prob, 170 prediction_fn=prediction_fn, 171 reuse=reuse, 172 scope=scope) 173 # Update feature shapes (try at least!) 174 # 下面这步我的理解就是让读者自行更改特征层的输入,未必论文中介绍的那几个block 175 if update_feat_shapes: #是否更新特征层图像尺寸? 176 #输入特征层图像尺寸以及inputs(应该是预测的特征尺寸),输出更新后的特征图尺寸列表 177 shapes = ssd_feat_shapes_from_net(r[0], self.params.feat_shapes) 178 #将更新的特征图尺寸shapes替换当前的特征图尺寸 179 self.params = self.params._replace(feat_shapes=shapes) 180 return r ##更新网络输入参数r 181 182 # 定义权重衰减=0.0005,L2正则化项系数;数据类型是NHWC:[batch, height, width, channels] 183 def arg_scope(self, weight_decay=0.0005, data_format='NHWC'): 184 """Network arg_scope. 185 """ 186 return ssd_arg_scope(weight_decay, data_format=data_format) 187 188 def arg_scope_caffe(self, caffe_scope): 189 """Caffe arg_scope used for weights importing. 190 """ 191 return ssd_arg_scope_caffe(caffe_scope) 192 193 # ======================================================================= # 194 ##更新特征形状尺寸(来自预测结果) 195 def update_feature_shapes(self, predictions): 196 """Update feature shapes from predictions collection (Tensor or Numpy 197 array). 198 """ 199 shapes = ssd_feat_shapes_from_net(predictions, self.params.feat_shapes) 200 self.params = self.params._replace(feat_shapes=shapes) 201 #输入原始图像尺寸;返回每个特征层每个参考锚点框的位置及尺寸信息(x,y,h,w) 202 def anchors(self, img_shape, dtype=np.float32): 203 """Compute the default anchor boxes, given an image shape. 204 """ 205 return ssd_anchors_all_layers(img_shape, 206 self.params.feat_shapes, 207 self.params.anchor_sizes, 208 self.params.anchor_ratios, 209 self.params.anchor_steps, 210 self.params.anchor_offset, 211 dtype) 212 #编码,用于将标签信息,真实目标信息和锚点框信息编码在一起;得到预测真实框到参考框的转换值 213 def bboxes_encode(self, labels, bboxes, anchors, 214 scope=None): 215 """Encode labels and bounding boxes. 216 """ 217 return ssd_common.tf_ssd_bboxes_encode( 218 labels, bboxes, anchors, 219 self.params.num_classes, 220 self.params.no_annotation_label, #未标注的标签(应该代表背景) 221 ignore_threshold=0.5, #IOU筛选阈值 222 prior_scaling=self.params.prior_scaling, #特征图目标与参考框间的尺寸缩放(0.1,0.1,0.2,0.2) 223 scope=scope) 224 #解码,用锚点框信息,锚点框与预测真实框间的转换值,得到真实的预测框(ymin,xmin,ymax,xmax) 225 def bboxes_decode(self, feat_localizations, anchors, 226 scope='ssd_bboxes_decode'): 227 """Encode labels and bounding boxes. 228 """ 229 return ssd_common.tf_ssd_bboxes_decode( 230 feat_localizations, anchors, 231 prior_scaling=self.params.prior_scaling, 232 scope=scope) 233 #通过SSD网络,得到检测到的bbox 234 def detected_bboxes(self, predictions, localisations, 235 select_threshold=None, nms_threshold=0.5, 236 clipping_bbox=None, top_k=400, keep_top_k=200): 237 """Get the detected bounding boxes from the SSD network output. 238 """ 239 # Select top_k bboxes from predictions, and clip 240 # 选取top_k=400个框,并对框做修建(超出原图尺寸范围的切掉) 241 242 # 得到对应某个类别的得分值以及bbox 243 rscores, rbboxes = 244 ssd_common.tf_ssd_bboxes_select(predictions, localisations, 245 select_threshold=select_threshold, 246 num_classes=self.params.num_classes) 247 #按照得分高低,筛选出400个bbox和对应得分 248 rscores, rbboxes = 249 tfe.bboxes_sort(rscores, rbboxes, top_k=top_k) 250 # Apply NMS algorithm. 251 # 应用非极大值抑制,去掉与得分最高的bbox的重叠率大于nms_threshold=0.5的,保留200个 252 rscores, rbboxes = 253 tfe.bboxes_nms_batch(rscores, rbboxes, 254 nms_threshold=nms_threshold, 255 keep_top_k=keep_top_k) 256 if clipping_bbox is not None: 257 rbboxes = tfe.bboxes_clip(clipping_bbox, rbboxes) 258 return rscores, rbboxes #返回裁剪好的bbox和对应得分 259 260 # 尽管一个ground truth可以与多个先验框匹配,但是ground truth相对先验框还是太少了, 261 # 所以负样本相对正样本会很多。为了保证正负样本尽量平衡,SSD采用了hard negative mining, 262 # 就是对负样本进行抽样,抽样时按照置信度误差(预测背景的置信度越小(预测背景,但实际上不是背景的概率很大),误差越大)进行降序排列, 263 # 选取误差的较大的top-k作为训练的负样本,以保证正负样本比例接近1:3 264 def losses(self, logits, localisations, 265 gclasses, glocalisations, gscores, 266 match_threshold=0.5, 267 negative_ratio=3., 268 alpha=1., 269 label_smoothing=0., 270 scope='ssd_losses'): 271 """ 272 Define the SSD network losses. 273 """ 274 return ssd_losses(logits, localisations, 275 gclasses, glocalisations, gscores, 276 match_threshold=match_threshold, 277 negative_ratio=negative_ratio, 278 alpha=alpha, 279 label_smoothing=label_smoothing, 280 scope=scope) 281 282 283 # =========================================================================== # 284 # SSD tools... 285 # =========================================================================== # 286 # ???? 287 def ssd_size_bounds_to_values(size_bounds, 288 n_feat_layers, 289 img_shape=(300, 300)): 290 """ 291 Compute the reference sizes of the anchor boxes from relative bounds. 292 The absolute values are measured in pixels, based on the network 293 default size (300 pixels). 294 295 This function follows the computation performed in the original 296 implementation of SSD in Caffe. 297 298 Return: 299 list of list containing the absolute sizes at each scale. For each scale, 300 the ratios only apply to the first value. 301 """ 302 assert img_shape[0] == img_shape[1] 303 304 img_size = img_shape[0] 305 min_ratio = int(size_bounds[0] * 100) 306 max_ratio = int(size_bounds[1] * 100) 307 step = int(math.floor((max_ratio - min_ratio) / (n_feat_layers - 2))) 308 # Start with the following smallest sizes. 309 sizes = [[img_size * size_bounds[0] / 2, img_size * size_bounds[0]]] 310 for ratio in range(min_ratio, max_ratio + 1, step): 311 sizes.append((img_size * ratio / 100., 312 img_size * (ratio + step) / 100.)) 313 return sizes 314 315 # 得到更新后的特征尺寸list 316 def ssd_feat_shapes_from_net(predictions, default_shapes=None): 317 """Try to obtain the feature shapes from the prediction layers. The latter 318 can be either a Tensor or Numpy ndarray. 319 320 Return: 321 如果预测没有完全成型,就是用默认值 322 list of feature shapes. Default values if predictions shape not fully 323 determined. 324 """ 325 feat_shapes = [] 326 for l in predictions: #l:预测的特征形状 327 # Get the shape, from either a np array or a tensor. 328 # 如果l是np.ndarray类型,则将l的形状赋给shape;否则将shape作为list 329 if isinstance(l, np.ndarray): 330 shape = l.shape 331 else: 332 shape = l.get_shape().as_list() 333 shape = shape[1:4] 334 # Problem: undetermined shape... 335 # 如果预测的特征尺寸未定,则使用默认的形状;否则将shape中的值赋给特征形状列表中 336 if None in shape: 337 return default_shapes 338 else: 339 feat_shapes.append(shape) 340 return feat_shapes #返回更新后的特征尺寸list 341 342 #default box 的生成 343 #生成一层anchor box 344 def ssd_anchor_one_layer(img_shape, #原始图像shape 345 feat_shape, #特征图shape 346 sizes, #默认box大小,两个正方形,两个长方形,仅仅就是长宽比例相反,所以就两个 347 ratios, #默认box长宽比,list,就是那些比率列表,元素值是比例,列表长度是框的个数 348 step, #特征图上一步对应在原图上的跨度 349 offset=0.5, 350 dtype=np.float32): 351 """Computer SSD default anchor boxes for one feature layer. 352 353 Determine the relative position grid of the centers, and the relative 354 width and height.确定中心的相对位置网格和相对位置网格宽度和高度。 355 356 Arguments: 357 feat_shape: Feature shape, used for computing relative position grids; 358 size: Absolute reference sizes; 359 ratios: Ratios to use on these features; 360 img_shape: Image shape, used for computing height, width relatively to the 361 former; 362 offset: Grid offset. 363 364 Return: 365 y, x, h, w: Relative x and y grids, and height and width. 366 """ 367 # Compute the position grid: simple way. 368 # y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]] 369 # y = (y.astype(dtype) + offset) / feat_shape[0] 370 # x = (x.astype(dtype) + offset) / feat_shape[1] 371 # Weird SSD-Caffe computation using steps values... 372 # 归一化到原图的锚点中心坐标(x,y);其坐标值域为(0,1) 373 # 计算default box中心坐标(相对于原图) 374 y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]] # 对于第一个特征图(block4:38x38); 375 # y=[[0,0,……0],[1,1,……1],……[37,37,……,37]]; 376 # 而x=[[0,1,2……,37],[0,1,2……,37],……[0,1,2……,37]] 377 y = (y.astype(dtype) + offset) * step / img_shape[0]# 将38个cell对应锚点框的y坐标偏移至每个cell中心,然后乘以相对原图缩放的比例,再除以原图 378 x = (x.astype(dtype) + offset) * step / img_shape[1]#可以得到在原图上,相对原图比例大小的每个锚点中心坐标x,y 379 380 # Expand dims to support easy broadcasting.#将锚点中心坐标扩大维度 381 y = np.expand_dims(y, axis=-1) #对于第一个特征图,y的shape=38x38x1;x的shape=38x38x1 382 x = np.expand_dims(x, axis=-1) 383 384 # Compute relative height and width. 385 # Tries to follow the original implementation of SSD for the order. 386 # 默认框的个数,该特征图上每个cell对应的锚点框数量;如:对于第一个特征图每个点预测4个锚点框(block4:38x38),2+2=4 387 num_anchors = len(sizes) + len(ratios) 388 h = np.zeros((num_anchors, ), dtype=dtype) #第一个锚点框的高h[0]=起始锚点的高/原图大小的高;例如:h[0]=21/300 389 w = np.zeros((num_anchors, ), dtype=dtype) #第一个锚点框的宽w[0]=起始锚点的宽/原图大小的宽;例如:w[0]=21/300 390 # Add first anchor boxes with ratio=1. 391 h[0] = sizes[0] / img_shape[0]# 添加长宽比为1的默认框 392 w[0] = sizes[0] / img_shape[1] 393 di = 1 #锚点框个数偏移 394 if len(sizes) > 1: 395 # 添加一组特殊的默认框,就是用S'k计算出来的box,长宽比为1,大小为sqrt(s(i) + s(i+1)) 396 #第二个锚点框的高h[1]=sqrt(起始锚点的高*起始锚点的宽)/原图大小的高;例如:h[1]=sqrt(21*45)/300 397 h[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[0] 398 #第二个锚点框的高w[1]=sqrt(起始锚点的高*起始锚点的宽)/原图大小的宽;例如:w[1]=sqrt(21*45)/300 399 w[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[1] 400 di += 1 401 # 添加不同比例的默认框(ratios中不含1) 402 # #遍历长宽比例,第一个特征图,r只有两个,2和0.5;共四个锚点框size(h[0]~h[3]) 403 for i, r in enumerate(ratios): 404 # 例如:对于第一个特征图,h[0+2]=h[2]=21/300/sqrt(2);w[0+2]=w[2]=45/300*sqrt(2) 405 h[i+di] = sizes[0] / img_shape[0] / math.sqrt(r) 406 # 例如:对于第一个特征图,h[1+2]=h[3]=21/300/sqrt(0.5);w[1+2]=w[3]=45/300*sqrt(0.5) 407 w[i+di] = sizes[0] / img_shape[1] * math.sqrt(r) 408 return y, x, h, w #返回没有归一化前的锚点坐标和尺寸 409 410 #检测所有特征图中锚点框的四个坐标信息 411 def ssd_anchors_all_layers(img_shape, #输入原始图大小 412 layers_shape,#每个特征层形状尺寸 413 anchor_sizes,#起始特征图中框的长宽size 414 anchor_ratios,#锚点框长宽比列表 415 anchor_steps,#锚点框相对原图缩放比例 416 offset=0.5,#锚点中心在每个特征图cell中的偏移 417 dtype=np.float32): 418 """Compute anchor boxes for all feature layers. 419 """ 420 layers_anchors = [] #用于存放所有特征图中锚点框位置尺寸信息 421 for i, s in enumerate(layers_shape):#6个特征图尺寸;如:第0个是38x38 422 # 分别计算每个特征图中锚点框的位置尺寸信息; 423 anchor_bboxes = ssd_anchor_one_layer(img_shape, s, 424 anchor_sizes[i],#输入:第i个特征图中起始锚点框大小;如第0个是(21., 45.) 425 anchor_ratios[i],#输入:第i个特征图中锚点框长宽比列表;如第0个是[2, .5] 426 anchor_steps[i],#输入:第i个特征图中锚点框相对原始图的缩放比;如第0个是8 427 offset=offset, dtype=dtype)#输入:第i个特征图中锚点框相对原始图的缩放比;如第0个是8 428 # 将6个特征图中每个特征图上的点对应的锚点框(6个或4个)保存 429 layers_anchors.append(anchor_bboxes) 430 return layers_anchors #返回所有特征图的锚点框尺寸信息 431 432 433 # =========================================================================== # 434 # Functional definition of VGG-based SSD 300.功能定义 435 # =========================================================================== # 436 #得到一个tensor的dim,list 437 def tensor_shape(x, rank=3): 438 """Returns the dimensions of a tensor. 439 Args: 440 image: A N-D Tensor of shape. 441 Returns: 442 A list of dimensions. Dimensions that are statically known are python 443 integers,otherwise they are integer scalar tensors. 444 """ 445 if x.get_shape().is_fully_defined(): 446 return x.get_shape().as_list() 447 else: 448 static_shape = x.get_shape().with_rank(rank).as_list() 449 dynamic_shape = tf.unstack(tf.shape(x), rank) 450 return [s if s is not None else d 451 for s, d in zip(static_shape, dynamic_shape)] 452 453 #对指定feature layers的位置预测以及类别预测 454 #首先计算anchors的数量,对于位置信息,输出16通道的feature map,将其reshape为[N,W,H,num_anchors,4]。 455 #对于类别信息,输出84通道的feature maps,再将其reshape为[N,W,H,num_anchors,num_classes]。返回计算得到的位置和类别预测。 456 #返回计算得到的位置和类别预测。 457 def ssd_multibox_layer(inputs,#输入特征层 458 num_classes,#类别数 459 sizes,#参考先验框的尺度 460 ratios=[1],#默认的先验框长宽比为1 461 normalization=-1,#默认不做正则化 462 bn_normalization=False): 463 """ 464 Construct a multibox layer, return a class and localization predictions. 465 """ 466 net = inputs 467 if normalization > 0:#如果输入整数,则进行L2正则化 468 net = custom_layers.l2_normalization(net, scaling=True)#对通道所在维度进行正则化,随后乘以gamma缩放系数 469 # Number of anchors. 470 num_anchors = len(sizes) + len(ratios)#每层特征图参考先验框的个数[4,6,6,6,4,4] 471 472 # Location.#每个先验框对应4个坐标信息 473 # 最后整个特征图所有锚点框预测目标位置 tensor为[h*w*每个cell先验框数,4] 474 num_loc_pred = num_anchors * 4#特征图上每个单元预测的坐标所需维度=锚点框数*4 475 # 通过对特征图进行3x3卷积得到位置信息和类别权重信息 476 loc_pred = slim.conv2d(net, num_loc_pred, [3, 3], activation_fn=None, 477 scope='conv_loc') #该部分是定位信息,输出维度为[特征图h,特征图w,每个单元所有锚点框坐标] 478 loc_pred = custom_layers.channel_to_last(loc_pred) 479 loc_pred = tf.reshape(loc_pred,tensor_shape(loc_pred, 4)[:-1]+[num_anchors, 4]) 480 # Class prediction. 481 #特征图上每个单元预测的类别所需维度=锚点框数*种类数 482 num_cls_pred = num_anchors * num_classes 483 # 该部分是类别信息,输出维度为[特征图h,特征图w,每个单元所有锚点框对应类别信息] 484 ##最后整个特征图所有锚点框预测类别 tensor为[h*w*每个cell先验框数,种类数] 485 cls_pred = slim.conv2d(net, num_cls_pred, [3, 3], activation_fn=None,scope='conv_cls') 486 cls_pred = custom_layers.channel_to_last(cls_pred) 487 cls_pred = tf.reshape(cls_pred,tensor_shape(cls_pred, 4)[:-1]+[num_anchors, num_classes]) 488 return cls_pred, loc_pred #返回预测得到的类别和box位置 tensor 489 490 #定义ssd网络结构 491 def ssd_net(inputs, 492 num_classes=SSDNet.default_params.num_classes, #分类数 493 feat_layers=SSDNet.default_params.feat_layers, #特征层 494 anchor_sizes=SSDNet.default_params.anchor_sizes, 495 anchor_ratios=SSDNet.default_params.anchor_ratios, 496 normalizations=SSDNet.default_params.normalizations,#正则化 497 is_training=True, 498 dropout_keep_prob=0.5, 499 prediction_fn=slim.softmax, 500 reuse=None, 501 scope='ssd_300_vgg'): 502 """SSD net definition. 503 """ 504 # if data_format == 'NCHW': 505 # inputs = tf.transpose(inputs, perm=(0, 3, 1, 2)) 506 507 # End_points collect relevant activations for external use. 508 end_points = {} #用于收集每一层输出结果 509 with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse): 510 # Original VGG-16 blocks. #VGG16网络的第一个conv,重复2次卷积,核为3x3,64个特征 511 net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') 512 end_points['block1'] = net #conv1_2结果存入end_points,name='block1' 513 net = slim.max_pool2d(net, [2, 2], scope='pool1') 514 # Block 2. #重复2次卷积,核为3x3,128个特征 515 net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') 516 end_points['block2'] = net #conv2_2结果存入end_points,name='block2' 517 net = slim.max_pool2d(net, [2, 2], scope='pool2') 518 # Block 3.#重复3次卷积,核为3x3,256个特征 519 net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') 520 end_points['block3'] = net#conv3_3结果存入end_points,name='block3' 521 net = slim.max_pool2d(net, [2, 2], scope='pool3') 522 # Block 4.#重复3次卷积,核为3x3,512个特征 523 net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') 524 end_points['block4'] = net #conv4_3结果存入end_points,name='block4' 525 net = slim.max_pool2d(net, [2, 2], scope='pool4') 526 # Block 5.#重复3次卷积,核为3x3,512个特征 527 net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') 528 end_points['block5'] = net #conv5_3结果存入end_points,name='block5' 529 net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5') 530 531 # Additional SSD blocks. #去掉了VGG的全连接层 532 # Block 6: let's dilate the hell out of it! 533 # 将VGG基础网络最后的池化层结果做扩展卷积(带孔卷积); 534 net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6') 535 end_points['block6'] = net #conv6结果存入end_points,name='block6' 536 net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training)#dropout层 537 # Block 7: 1x1 conv. Because the fuck. 538 # 将dropout后的网络做1x1卷积,输出1024特征,name='block7' 539 net = slim.conv2d(net, 1024, [1, 1], scope='conv7') 540 end_points['block7'] = net 541 net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training)#将卷积后的网络继续做dropout 542 543 # Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts). 544 end_point = 'block8' #对上述dropout的网络做1x1卷积,然后做3x3卷积,,输出512特征图,name=‘block8’ 545 with tf.variable_scope(end_point): 546 net = slim.conv2d(net, 256, [1, 1], scope='conv1x1') 547 net = custom_layers.pad2d(net, pad=(1, 1)) 548 net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID') 549 end_points[end_point] = net 550 end_point = 'block9' #对上述网络做1x1卷积,然后做3x3卷积,输出256特征图,name=‘block9’ 551 with tf.variable_scope(end_point): 552 net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') 553 net = custom_layers.pad2d(net, pad=(1, 1)) 554 net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID') 555 end_points[end_point] = net 556 end_point = 'block10' #对上述网络做1x1卷积,然后做3x3卷积,输出256特征图,name=‘block10’ 557 with tf.variable_scope(end_point): 558 net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') 559 net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') 560 end_points[end_point] = net 561 end_point = 'block11' #对上述网络做1x1卷积,然后做3x3卷积,输出256特征图,name=‘block11’ 562 with tf.variable_scope(end_point): 563 net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') 564 net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') 565 end_points[end_point] = net 566 567 # Prediction and localisations layers. 568 # 预测和定位 569 predictions = [] 570 logits = [] 571 localisations = [] 572 for i, layer in enumerate(feat_layers): #遍历特征层 573 with tf.variable_scope(layer + '_box'): #起个命名范围 574 # 做多尺度大小box预测的特征层,返回每个cell中每个先验框预测的类别p和预测的位置l 575 p, l = ssd_multibox_layer(end_points[layer], 576 num_classes,#种类数 577 anchor_sizes[i],#先验框尺度(同一特征图上的先验框尺度和长宽比一致) 578 anchor_ratios[i],#先验框长宽比 579 normalizations[i])#每个特征正则化信息,目前是只对第一个特征图做归一化操作; 580 # 把每一层的预测收集 581 predictions.append(prediction_fn(p))#prediction_fn为softmax,预测类别 582 logits.append(p)#把每个cell每个先验框预测的类别的概率值存在logits中 583 localisations.append(l)#预测位置信息 584 # 返回类别预测结果,位置预测结果,所属某个类别的概率值,以及特征层 585 return predictions, localisations, logits, end_points 586 ssd_net.default_image_size = 300 587 588 # 权重衰减系数=0.0005;其是L2正则化项的系数 589 def ssd_arg_scope(weight_decay=0.0005, data_format='NHWC'): 590 """ 591 Defines the VGG arg scope. 592 Args: 593 weight_decay: The l2 regularization coefficient. 594 Returns: 595 An arg_scope. 596 """ 597 with slim.arg_scope([slim.conv2d, slim.fully_connected], 598 activation_fn=tf.nn.relu, 599 weights_regularizer=slim.l2_regularizer(weight_decay), 600 weights_initializer=tf.contrib.layers.xavier_initializer(), 601 biases_initializer=tf.zeros_initializer()): 602 with slim.arg_scope([slim.conv2d, slim.max_pool2d], 603 padding='SAME', 604 data_format=data_format): 605 with slim.arg_scope([custom_layers.pad2d, 606 custom_layers.l2_normalization, 607 custom_layers.channel_to_last], 608 data_format=data_format) as sc: 609 return sc 610 611 # =========================================================================== # 612 # Caffe scope: importing weights at initialization. 613 # =========================================================================== # 614 615 def ssd_arg_scope_caffe(caffe_scope): 616 """Caffe scope definition. 617 618 Args: 619 caffe_scope: Caffe scope object with loaded weights. 620 621 Returns: 622 An arg_scope. 623 """ 624 # Default network arg scope. 625 with slim.arg_scope([slim.conv2d], 626 activation_fn=tf.nn.relu, 627 weights_initializer=caffe_scope.conv_weights_init(), 628 biases_initializer=caffe_scope.conv_biases_init()): 629 with slim.arg_scope([slim.fully_connected], 630 activation_fn=tf.nn.relu): 631 with slim.arg_scope([custom_layers.l2_normalization], 632 scale_initializer=caffe_scope.l2_norm_scale_init()): 633 with slim.arg_scope([slim.conv2d, slim.max_pool2d], 634 padding='SAME') as sc: 635 return sc 636 637 638 # =========================================================================== # 639 # SSD loss function. 640 # =========================================================================== # 641 def ssd_losses(logits, localisations, #损失函数定义为位置误差和置信度误差的加权和; 642 gclasses, glocalisations, gscores, 643 match_threshold=0.5, 644 negative_ratio=3., 645 alpha=1., #位置误差权重系数 646 label_smoothing=0., 647 device='/cpu:0', 648 scope=None): 649 with tf.name_scope(scope, 'ssd_losses'): 650 lshape = tfe.get_shape(logits[0], 5) 651 num_classes = lshape[-1] 652 batch_size = lshape[0] 653 654 # Flatten out all vectors! 655 flogits = [] 656 fgclasses = [] 657 fgscores = [] 658 flocalisations = [] 659 fglocalisations = [] 660 for i in range(len(logits)): 661 flogits.append(tf.reshape(logits[i], [-1, num_classes])) #将类别的概率值reshape成(-1,21) 662 fgclasses.append(tf.reshape(gclasses[i], [-1])) #真实类别 663 fgscores.append(tf.reshape(gscores[i], [-1])) #预测真实目标的得分 664 flocalisations.append(tf.reshape(localisations[i], [-1, 4])) #预测真实目标边框坐标(编码形式的值) 665 fglocalisations.append(tf.reshape(glocalisations[i], [-1, 4])) #用于将真实目标gt的坐标进行编码存储 666 # And concat the crap! 667 logits = tf.concat(flogits, axis=0) 668 gclasses = tf.concat(fgclasses, axis=0) 669 gscores = tf.concat(fgscores, axis=0) 670 localisations = tf.concat(flocalisations, axis=0) 671 glocalisations = tf.concat(fglocalisations, axis=0) 672 dtype = logits.dtype 673 674 # Compute positive matching mask... 675 pmask = gscores > match_threshold #预测框与真实框IOU>0.5则将这个先验作为正样本 676 fpmask = tf.cast(pmask, dtype) 677 n_positives = tf.reduce_sum(fpmask) #求正样本数量N 678 679 # Hard negative mining... 680 #为了保证正负样本尽量平衡,SSD采用了hard negative mining, 681 # 就是对负样本进行抽样,抽样时按照置信度误差(预测背景的置信度越小,误差越大)进行降序排列, 682 # 选取误差的较大的top - k作为训练的负样本,以保证正负样本比例接近1: 3 683 no_classes = tf.cast(pmask, tf.int32) 684 predictions = slim.softmax(logits) #类别预测 685 nmask = tf.logical_and(tf.logical_not(pmask), 686 gscores > -0.5) 687 fnmask = tf.cast(nmask, dtype) 688 nvalues = tf.where(nmask, 689 predictions[:, 0], 690 1. - fnmask) 691 nvalues_flat = tf.reshape(nvalues, [-1]) 692 # Number of negative entries to select. 693 max_neg_entries = tf.cast(tf.reduce_sum(fnmask), tf.int32) 694 n_neg = tf.cast(negative_ratio * n_positives, tf.int32) + batch_size #负样本数量,保证是正样本3倍 695 n_neg = tf.minimum(n_neg, max_neg_entries) 696 # 抽样时按照置信度误差(预测背景的置信度越小,误差越大)进行降序排列,选取误差的较大的top-k作为训练的负样本 697 val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg) 698 max_hard_pred = -val[-1] 699 # Final negative mask. 700 nmask = tf.logical_and(nmask, nvalues < max_hard_pred) 701 fnmask = tf.cast(nmask, dtype) 702 703 # Add cross-entropy loss.#交叉熵 704 with tf.name_scope('cross_entropy_pos'): 705 # 类别置信度误差 706 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=gclasses) 707 # 将置信度误差除以正样本数后除以batch-size 708 loss = tf.div(tf.reduce_sum(loss * fpmask), batch_size, name='value') 709 tf.losses.add_loss(loss) 710 711 with tf.name_scope('cross_entropy_neg'): 712 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, 713 labels=no_classes) 714 loss = tf.div(tf.reduce_sum(loss * fnmask), batch_size, name='value') 715 tf.losses.add_loss(loss) 716 717 # Add localization loss: smooth L1, L2, ... 718 with tf.name_scope('localization'): 719 # Weights Tensor: positive mask + random negative. 720 weights = tf.expand_dims(alpha * fpmask, axis=-1) 721 # 先验框对应边界的位置预测值-真实位置;然后做Smooth L1 loss 722 loss = custom_layers.abs_smooth(localisations - glocalisations) 723 # 将上面的loss*权重(=alpha/正样本数)求和后除以batch-size 724 loss = tf.div(tf.reduce_sum(loss * weights), batch_size, name='value') 725 tf.losses.add_loss(loss)#获得置信度误差和位置误差的加权和 726 727 728 def ssd_losses_old(logits, localisations, 729 gclasses, glocalisations, gscores, 730 match_threshold=0.5, 731 negative_ratio=3., 732 alpha=1., 733 label_smoothing=0., 734 device='/cpu:0', 735 scope=None): 736 """Loss functions for training the SSD 300 VGG network. 737 738 This function defines the different loss components of the SSD, and 739 adds them to the TF loss collection. 740 741 Arguments: 742 logits: (list of) predictions logits Tensors; 743 localisations: (list of) localisations Tensors; 744 gclasses: (list of) groundtruth labels Tensors; 745 glocalisations: (list of) groundtruth localisations Tensors; 746 gscores: (list of) groundtruth score Tensors; 747 """ 748 with tf.device(device): 749 with tf.name_scope(scope, 'ssd_losses'): 750 l_cross_pos = [] 751 l_cross_neg = [] 752 l_loc = [] 753 for i in range(len(logits)): 754 dtype = logits[i].dtype 755 with tf.name_scope('block_%i' % i): 756 # Sizing weight... 757 wsize = tfe.get_shape(logits[i], rank=5) 758 wsize = wsize[1] * wsize[2] * wsize[3] 759 760 # Positive mask. 761 pmask = gscores[i] > match_threshold 762 fpmask = tf.cast(pmask, dtype) 763 n_positives = tf.reduce_sum(fpmask) 764 765 # Select some random negative entries. 766 # n_entries = np.prod(gclasses[i].get_shape().as_list()) 767 # r_positive = n_positives / n_entries 768 # r_negative = negative_ratio * n_positives / (n_entries - n_positives) 769 770 # Negative mask. 771 no_classes = tf.cast(pmask, tf.int32) 772 predictions = slim.softmax(logits[i]) 773 nmask = tf.logical_and(tf.logical_not(pmask), 774 gscores[i] > -0.5) 775 fnmask = tf.cast(nmask, dtype) 776 nvalues = tf.where(nmask, 777 predictions[:, :, :, :, 0], 778 1. - fnmask) 779 nvalues_flat = tf.reshape(nvalues, [-1]) 780 # Number of negative entries to select. 781 n_neg = tf.cast(negative_ratio * n_positives, tf.int32) 782 n_neg = tf.maximum(n_neg, tf.size(nvalues_flat) // 8) 783 n_neg = tf.maximum(n_neg, tf.shape(nvalues)[0] * 4) 784 max_neg_entries = 1 + tf.cast(tf.reduce_sum(fnmask), tf.int32) 785 n_neg = tf.minimum(n_neg, max_neg_entries) 786 787 val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg) 788 max_hard_pred = -val[-1] 789 # Final negative mask. 790 nmask = tf.logical_and(nmask, nvalues < max_hard_pred) 791 fnmask = tf.cast(nmask, dtype) 792 793 # Add cross-entropy loss. 794 with tf.name_scope('cross_entropy_pos'): 795 fpmask = wsize * fpmask 796 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i], 797 labels=gclasses[i]) 798 loss = tf.losses.compute_weighted_loss(loss, fpmask) 799 l_cross_pos.append(loss) 800 801 with tf.name_scope('cross_entropy_neg'): 802 fnmask = wsize * fnmask 803 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits[i], 804 labels=no_classes) 805 loss = tf.losses.compute_weighted_loss(loss, fnmask) 806 l_cross_neg.append(loss) 807 808 # Add localization loss: smooth L1, L2, ... 809 with tf.name_scope('localization'): 810 # Weights Tensor: positive mask + random negative. 811 weights = tf.expand_dims(alpha * fpmask, axis=-1) 812 loss = custom_layers.abs_smooth(localisations[i] - glocalisations[i]) 813 loss = tf.losses.compute_weighted_loss(loss, weights) 814 l_loc.append(loss) 815 816 # Additional total losses... 817 with tf.name_scope('total'): 818 total_cross_pos = tf.add_n(l_cross_pos, 'cross_entropy_pos') 819 total_cross_neg = tf.add_n(l_cross_neg, 'cross_entropy_neg') 820 total_cross = tf.add(total_cross_pos, total_cross_neg, 'cross_entropy') 821 total_loc = tf.add_n(l_loc, 'localization') 822 823 # Add to EXTRA LOSSES TF.collection 824 tf.add_to_collection('EXTRA_LOSSES', total_cross_pos) 825 tf.add_to_collection('EXTRA_LOSSES', total_cross_neg) 826 tf.add_to_collection('EXTRA_LOSSES', total_cross) 827 tf.add_to_collection('EXTRA_LOSSES', total_loc)
custom_layers.py的代码解析如下:
1 # Copyright 2015 Paul Balanca. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Implement some custom layers, not provided by TensorFlow. 16 实现一些TensorFlow没有提供的自定义层 17 Trying to follow as much as possible the style/standards used in 18 tf.contrib.layers 19 尽可能多地遵循这种风格/标准 20 """ 21 import tensorflow as tf 22 23 from tensorflow.contrib.framework.python.ops import add_arg_scope 24 from tensorflow.contrib.layers.python.layers import initializers 25 from tensorflow.contrib.framework.python.ops import variables 26 from tensorflow.contrib.layers.python.layers import utils 27 from tensorflow.python.ops import nn 28 from tensorflow.python.ops import init_ops 29 from tensorflow.python.ops import variable_scope 30 31 32 def abs_smooth(x): 33 """Smoothed absolute function. Useful to compute an L1 smooth error. 34 #绝对平滑函数,用于计算L1平滑误差 35 #当预测值与目标值相差很大时, 梯度容易爆炸,因此L1 loss对噪声(outliers)更鲁棒 36 Define as: 37 x^2 / 2 if abs(x) < 1 38 abs(x) - 0.5 if abs(x) > 1 39 We use here a differentiable definition using min(x) and abs(x). Clearly 40 not optimal, but good enough for our purpose! 41 """ 42 absx = tf.abs(x) 43 minx = tf.minimum(absx, 1) 44 r = 0.5 * ((absx - 1) * minx + absx) #计算得到L1 smooth loss 45 return r 46 47 @add_arg_scope 48 #L2正则化:稀疏正则化操作 49 def l2_normalization( 50 inputs,#输入特征层,[batch_size,h,w,c] 51 scaling=False,#默认归一化后是否设置缩放变量gamma 52 scale_initializer=init_ops.ones_initializer(),#scale初始化为1 53 reuse=None, 54 variables_collections=None, 55 outputs_collections=None, 56 data_format='NHWC', 57 trainable=True, 58 scope=None): 59 """Implement L2 normalization on every feature (i.e. spatial normalization). 60 对每个特性实现L2规范化,空间归一化 61 Should be extended in some near future to other dimensions, providing a more 62 flexible normalization framework. 63 是否应该在不久的将来扩展到其他维度,提供更多灵活的标准化框架。 64 Args: 65 inputs: a 4-D tensor with dimensions [batch_size, height, width, channels]. 66 scaling: whether or not to add a post scaling operation along the dimensions 67 which have been normalized. 68 scale_initializer: An initializer for the weights. 69 reuse: whether or not the layer and its variables should be reused. To be 70 able to reuse the layer scope must be given. 71 variables_collections: optional list of collections for all the variables or 72 a dictionary containing a different list of collection per variable. 73 outputs_collections: collection to add the outputs. 74 data_format: NHWC or NCHW data format. 75 trainable: If `True` also add variables to the graph collection 76 `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). 77 scope: Optional scope for `variable_scope`. 78 Returns: 79 A `Tensor` representing the output of the operation. 80 """ 81 82 with variable_scope.variable_scope( 83 scope, 'L2Normalization', [inputs], reuse=reuse) as sc: 84 inputs_shape = inputs.get_shape()#得到输入特征层的维度信息 85 inputs_rank = inputs_shape.ndims #维度数=4 86 dtype = inputs.dtype.base_dtype#数据类型 87 if data_format == 'NHWC': 88 # norm_dim = tf.range(1, inputs_rank-1) 89 norm_dim = tf.range(inputs_rank-1, inputs_rank)#需要正则化的维度是4-1=3即channel这个维度 90 params_shape = inputs_shape[-1:]#通道数 91 elif data_format == 'NCHW': 92 # norm_dim = tf.range(2, inputs_rank) 93 norm_dim = tf.range(1, 2)#需要正则化的维度是第1维,即channel这个维度 94 params_shape = (inputs_shape[1])#通道数 95 96 # Normalize along spatial dimensions. 97 # 对通道所在维度进行正则化,其中epsilon是避免除0风险 98 outputs = nn.l2_normalize(inputs, norm_dim, epsilon=1e-12) 99 # Additional scaling. 100 # 判断是否对正则化后设置缩放变量 101 if scaling: 102 scale_collections = utils.get_variable_collections( 103 variables_collections, 'scale') 104 scale = variables.model_variable('gamma', 105 shape=params_shape, 106 dtype=dtype, 107 initializer=scale_initializer, 108 collections=scale_collections, 109 trainable=trainable) 110 if data_format == 'NHWC': 111 outputs = tf.multiply(outputs, scale) 112 elif data_format == 'NCHW': 113 scale = tf.expand_dims(scale, axis=-1) 114 scale = tf.expand_dims(scale, axis=-1) 115 outputs = tf.multiply(outputs, scale) 116 # outputs = tf.transpose(outputs, perm=(0, 2, 3, 1)) 117 # 即返回L2_norm*gamma 118 return utils.collect_named_outputs(outputs_collections, 119 sc.original_name_scope, outputs) 120 121 122 @add_arg_scope 123 def pad2d(inputs, 124 pad=(0, 0), 125 mode='CONSTANT', 126 data_format='NHWC', 127 trainable=True, 128 scope=None): 129 """ 130 2D Padding layer, adding a symmetric padding to H and W dimensions. 131 2D填充层,为H和W维度添加对称填充 132 Aims to mimic padding in Caffe and MXNet, helping the port of models to 133 TensorFlow. Tries to follow the naming convention of `tf.contrib.layers`. 134 目的是在Caffe和MXNet中模拟填充,帮助模型移植到TensorFlow。 135 尝试遵循“tf.contrib.layers”的命名约定。 136 Args: 137 inputs: 4D input Tensor; 138 pad: 2-Tuple with padding values for H and W dimensions; 139 mode: Padding mode. C.f. `tf.pad` 140 data_format: NHWC or NCHW data format. 141 """ 142 with tf.name_scope(scope, 'pad2d', [inputs]): 143 # Padding shape. 144 if data_format == 'NHWC': 145 paddings = [[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]] 146 elif data_format == 'NCHW': 147 paddings = [[0, 0], [0, 0], [pad[0], pad[0]], [pad[1], pad[1]]] 148 net = tf.pad(inputs, paddings, mode=mode) 149 return net 150 151 152 @add_arg_scope 153 #作用,将输入的特征图网络的通道维度放在最后,返回变形后的网络 154 def channel_to_last(inputs, 155 data_format='NHWC', 156 scope=None): 157 """Move the channel axis to the last dimension. Allows to 158 provide a single output format whatever the input data format. 159 将通道轴移动到最后一个维度。允许无论输入数据格式如何,都要提供单一的输出格式。 160 Args: 161 inputs: Input Tensor; 162 data_format: NHWC or NCHW. 163 Return: 164 Input in NHWC format. 165 """ 166 with tf.name_scope(scope, 'channel_to_last', [inputs]): 167 if data_format == 'NHWC': 168 net = inputs 169 elif data_format == 'NCHW': 170 net = tf.transpose(inputs, perm=(0, 2, 3, 1)) 171 return net
ssd_common.py
1 # Copyright 2015 Paul Balanca. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Shared function between different SSD implementations. 16 """ 17 import numpy as np 18 import tensorflow as tf 19 import tf_extended as tfe 20 21 22 # =========================================================================== # 23 # TensorFlow implementation of boxes SSD encoding / decoding. 24 # =========================================================================== # 25 def tf_ssd_bboxes_encode_layer(labels, #gt标签,1D的tensor 26 bboxes, #Nx4的Tensor(float),真实的bbox 27 anchors_layer, #参考锚点list 28 num_classes, #分类类别数 29 no_annotation_label, 30 ignore_threshold=0.5, #gt和锚点框间的匹配阈值,大于该值则为正样本 31 prior_scaling=[0.1, 0.1, 0.2, 0.2], #真实值到预测值转换中用到的缩放 32 dtype=tf.float32): 33 """Encode groundtruth labels and bounding boxes using SSD anchors from 34 one layer. 35 Arguments: 36 labels: 1D Tensor(int64) containing groundtruth labels; 37 bboxes: Nx4 Tensor(float) with bboxes relative coordinates; 38 anchors_layer: Numpy array with layer anchors; 39 matching_threshold: Threshold for positive match with groundtruth bboxes; 40 prior_scaling: Scaling of encoded coordinates. 41 Return: 42 (target_labels, target_localizations, target_scores): Target Tensors. 返回:包含目标标签类别,目标位置,目标置信度的tesndor 43 """ 44 # Anchors coordinates and volume. 45 yref, xref, href, wref = anchors_layer #此前每个特征图上点对应生成的锚点框作为参考框 46 ymin = yref - href / 2. #求参考框的左上角点(xmin,ymin)和右下角点(xmax,ymax) 47 xmin = xref - wref / 2. #yref和xref的shape为(38,38,1);href和wref的shape为(4,) 48 ymax = yref + href / 2. 49 xmax = xref + wref / 2. 50 vol_anchors = (xmax - xmin) * (ymax - ymin) #求参考框面积vol_anchors 51 52 # Initialize tensors... #shape表示每个特征图上总锚点数 53 shape = (yref.shape[0], yref.shape[1], href.size) #对于第一个特征图,shape=(38,38,4);第二个特征图的shape=(19,19,6) 54 feat_labels = tf.zeros(shape, dtype=tf.int64) #初始化每个特征图上的点对应的各个box所属标签维度 如:38x38x4 55 feat_scores = tf.zeros(shape, dtype=dtype) #初始化每个特征图上的点对应的各个box所属标目标的得分值维度 如:38x38x4 56 57 feat_ymin = tf.zeros(shape, dtype=dtype) #预测每个特征图每个点所属目标的坐标 ;如38x38x4;初始化为全0 58 feat_xmin = tf.zeros(shape, dtype=dtype) 59 feat_ymax = tf.ones(shape, dtype=dtype) 60 feat_xmax = tf.ones(shape, dtype=dtype) 61 62 def jaccard_with_anchors(bbox): #计算gt的框和参考锚点框的重合度 63 """Compute jaccard score between a box and the anchors. 64 """ 65 int_ymin = tf.maximum(ymin, bbox[0]) #计算重叠区域的坐标 66 int_xmin = tf.maximum(xmin, bbox[1]) 67 int_ymax = tf.minimum(ymax, bbox[2]) 68 int_xmax = tf.minimum(xmax, bbox[3]) 69 h = tf.maximum(int_ymax - int_ymin, 0.) #计算重叠区域的长与宽 70 w = tf.maximum(int_xmax - int_xmin, 0.) 71 # Volumes. 72 inter_vol = h * w #重叠区域的面积 73 union_vol = vol_anchors - inter_vol #计算bbox和参考框的并集区域 74 + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) 75 jaccard = tf.div(inter_vol, union_vol) #计算IOU并返回该值 76 return jaccard 77 78 def intersection_with_anchors(bbox): #计算某个参考框包含真实框的得分情况 79 """Compute intersection between score a box and the anchors. 80 """ 81 int_ymin = tf.maximum(ymin, bbox[0]) #计算bbox和锚点框重叠区域的坐标和长宽 82 int_xmin = tf.maximum(xmin, bbox[1]) 83 int_ymax = tf.minimum(ymax, bbox[2]) 84 int_xmax = tf.minimum(xmax, bbox[3]) 85 h = tf.maximum(int_ymax - int_ymin, 0.) 86 w = tf.maximum(int_xmax - int_xmin, 0.) 87 inter_vol = h * w #重叠区域面积 88 scores = tf.div(inter_vol, vol_anchors) #将重叠区域面积除以参考框面积作为该参考框得分值; 89 return scores 90 91 def condition(i, feat_labels, feat_scores, 92 feat_ymin, feat_xmin, feat_ymax, feat_xmax): 93 """Condition: check label index. 94 """ 95 r = tf.less(i, tf.shape(labels)) # 逐元素比较大小,遍历labels,因为i在body返回的时候加1了 96 return r[0] 97 98 def body(i, feat_labels, feat_scores, #该函数大致意思是选择与gt box IOU最大的锚点框负责回归任务,并预测对应的边界框,如此循环 99 feat_ymin, feat_xmin, feat_ymax, feat_xmax): 100 """Body: update feature labels, scores and bboxes. 101 Follow the original SSD paper for that purpose: 102 - assign values when jaccard > 0.5; 103 - only update if beat the score of other bboxes. 104 """ 105 # Jaccard score. #计算bbox与参考框的IOU值 106 label = labels[i] 107 bbox = bboxes[i] 108 jaccard = jaccard_with_anchors(bbox) 109 # Mask: check threshold + scores + no annotations + num_classes. 110 mask = tf.greater(jaccard, feat_scores) #当IOU大于feat_scores时,对应的mask至1,做筛选 111 # mask = tf.logical_and(mask, tf.greater(jaccard, matching_threshold)) 112 mask = tf.logical_and(mask, feat_scores > -0.5) 113 mask = tf.logical_and(mask, label < num_classes) #label满足<21 114 imask = tf.cast(mask, tf.int64) #将mask转换数据类型int型 115 fmask = tf.cast(mask, dtype) #将mask转换数据类型float型 116 # Update values using mask. 117 feat_labels = imask * label + (1 - imask) * feat_labels #当mask=1,则feat_labels=1;否则为0,即背景 118 feat_scores = tf.where(mask, jaccard, feat_scores) #tf.where表示如果mask为真则jaccard,否则为feat_scores 119 120 feat_ymin = fmask * bbox[0] + (1 - fmask) * feat_ymin #选择与GT bbox IOU最大的框作为GT bbox,然后循环 121 feat_xmin = fmask * bbox[1] + (1 - fmask) * feat_xmin 122 feat_ymax = fmask * bbox[2] + (1 - fmask) * feat_ymax 123 feat_xmax = fmask * bbox[3] + (1 - fmask) * feat_xmax 124 125 # Check no annotation label: ignore these anchors... #对没有标注标签的锚点框做忽视,应该是背景 126 # interscts = intersection_with_anchors(bbox) 127 # mask = tf.logical_and(interscts > ignore_threshold, 128 # label == no_annotation_label) 129 # # Replace scores by -1. 130 # feat_scores = tf.where(mask, -tf.cast(mask, dtype), feat_scores) 131 132 return [i+1, feat_labels, feat_scores, 133 feat_ymin, feat_xmin, feat_ymax, feat_xmax] 134 # Main loop definition. 135 i = 0 136 [i, feat_labels, feat_scores, 137 feat_ymin, feat_xmin, 138 feat_ymax, feat_xmax] = tf.while_loop(condition, body, 139 [i, feat_labels, feat_scores, 140 feat_ymin, feat_xmin, 141 feat_ymax, feat_xmax]) 142 # Transform to center / size. #转换为中心及长宽形式(计算补偿后的中心) 143 feat_cy = (feat_ymax + feat_ymin) / 2. #真实预测值其实是边界框相对于先验框的转换值,encode就是为了求这个转换值 144 feat_cx = (feat_xmax + feat_xmin) / 2. 145 feat_h = feat_ymax - feat_ymin 146 feat_w = feat_xmax - feat_xmin 147 # Encode features. 148 feat_cy = (feat_cy - yref) / href / prior_scaling[0] #(预测真实边界框中心y-参考框中心y)/参考框高/缩放尺度 149 feat_cx = (feat_cx - xref) / wref / prior_scaling[1] 150 feat_h = tf.log(feat_h / href) / prior_scaling[2] #log(预测真实边界框高h/参考框高h)/缩放尺度 151 feat_w = tf.log(feat_w / wref) / prior_scaling[3] 152 # Use SSD ordering: x / y / w / h instead of ours. 153 feat_localizations = tf.stack([feat_cx, feat_cy, feat_w, feat_h], axis=-1) #返回(cx转换值,cy转换值,w转换值,h转换值)形式的边界框的预测值(其实是预测框相对于参考框的转换) 154 return feat_labels, feat_localizations, feat_scores #返回目标标签,目标预测值(位置转换值),目标置信度 155 #经过我们回归得到的变换,经过变换得到真实框,所以这个地方损失函数其实是我们预测的是变换,我们实际的框和anchor之间的变换和我们预测的变换之间的loss。我们回归的是一种变换。并不是直接预测框,这个和YOLO是不一样的。和Faster RCNN是一样的 156 157 158 def tf_ssd_bboxes_encode(labels, #1D的tensor 包含gt标签 159 bboxes, #Nx4的tensor包含真实框的相对坐标 160 anchors, #参考锚点框信息(y,x,h,w) 其中y,x是中心坐标 161 num_classes, 162 no_annotation_label, 163 ignore_threshold=0.5, 164 prior_scaling=[0.1, 0.1, 0.2, 0.2], 165 dtype=tf.float32, 166 scope='ssd_bboxes_encode'): 167 """Encode groundtruth labels and bounding boxes using SSD net anchors. 168 Encoding boxes for all feature layers. 169 Arguments: 170 labels: 1D Tensor(int64) containing groundtruth labels; 171 bboxes: Nx4 Tensor(float) with bboxes relative coordinates; 172 anchors: List of Numpy array with layer anchors; 173 matching_threshold: Threshold for positive match with groundtruth bboxes; 174 prior_scaling: Scaling of encoded coordinates. 175 Return: 176 (target_labels, target_localizations, target_scores): #返回:目标标签,目标位置,目标得分值(都是list形式) 177 Each element is a list of target Tensors. 178 """ 179 with tf.name_scope(scope): 180 target_labels = [] #目标标签 181 target_localizations = [] #目标位置 182 target_scores = [] #目标得分 183 for i, anchors_layer in enumerate(anchors): #对所有特征图中的参考框做遍历 184 with tf.name_scope('bboxes_encode_block_%i' % i): 185 t_labels, t_loc, t_scores = 186 tf_ssd_bboxes_encode_layer(labels, bboxes, anchors_layer, #输入真实标签,gt位置大小,参考框位置大小……得到预测真实标签,参考框到真实框的转换以及得分 187 num_classes, no_annotation_label, 188 ignore_threshold, 189 prior_scaling, dtype) 190 target_labels.append(t_labels) 191 target_localizations.append(t_loc) 192 target_scores.append(t_scores) 193 return target_labels, target_localizations, target_scores 194 195 196 def tf_ssd_bboxes_decode_layer(feat_localizations, #解码,在预测时用到,根据之前得到的预测值相对于参考框的转换值后,反推出真实位置(该位置包括真实的x,y,w,h) 197 anchors_layer, #需要输入:预测框和参考框的转换feat_localizations,参考框位置尺度信息anchors_layer,以及转换时用到的缩放 198 prior_scaling=[0.1, 0.1, 0.2, 0.2]): #输出真实预测框的ymin,xmin,ymax,xmax 199 """Compute the relative bounding boxes from the layer features and 200 reference anchor bounding boxes. 201 Arguments: 202 feat_localizations: Tensor containing localization features. 203 anchors: List of numpy array containing anchor boxes. 204 Return: 205 Tensor Nx4: ymin, xmin, ymax, xmax 206 """ 207 yref, xref, href, wref = anchors_layer #锚点框的参考中心点以及长宽 208 209 # Compute center, height and width 210 cx = feat_localizations[:, :, :, :, 0] * wref * prior_scaling[0] + xref 211 cy = feat_localizations[:, :, :, :, 1] * href * prior_scaling[1] + yref 212 w = wref * tf.exp(feat_localizations[:, :, :, :, 2] * prior_scaling[2]) 213 h = href * tf.exp(feat_localizations[:, :, :, :, 3] * prior_scaling[3]) 214 # Boxes coordinates. 215 ymin = cy - h / 2. 216 xmin = cx - w / 2. 217 ymax = cy + h / 2. 218 xmax = cx + w / 2. 219 bboxes = tf.stack([ymin, xmin, ymax, xmax], axis=-1) 220 return bboxes #预测真实框的坐标信息(两点式的框) 221 222 223 def tf_ssd_bboxes_decode(feat_localizations, 224 anchors, 225 prior_scaling=[0.1, 0.1, 0.2, 0.2], 226 scope='ssd_bboxes_decode'): 227 """Compute the relative bounding boxes from the SSD net features and 228 reference anchors bounding boxes. 229 Arguments: 230 feat_localizations: List of Tensors containing localization features. 231 anchors: List of numpy array containing anchor boxes. 232 Return: 233 List of Tensors Nx4: ymin, xmin, ymax, xmax 234 """ 235 with tf.name_scope(scope): 236 bboxes = [] 237 for i, anchors_layer in enumerate(anchors): 238 bboxes.append( 239 tf_ssd_bboxes_decode_layer(feat_localizations[i], 240 anchors_layer, 241 prior_scaling)) 242 return bboxes 243 244 245 # =========================================================================== # 246 # SSD boxes selection. 247 # =========================================================================== # 248 def tf_ssd_bboxes_select_layer(predictions_layer, localizations_layer, #输入预测得到的类别和位置做筛选 249 select_threshold=None, 250 num_classes=21, 251 ignore_class=0, 252 scope=None): 253 """Extract classes, scores and bounding boxes from features in one layer. 254 Batch-compatible: inputs are supposed to have batch-type shapes. 255 Args: 256 predictions_layer: A SSD prediction layer; 257 localizations_layer: A SSD localization layer; 258 select_threshold: Classification threshold for selecting a box. All boxes 259 under the threshold are set to 'zero'. If None, no threshold applied. 260 Return: 261 d_scores, d_bboxes: Dictionary of scores and bboxes Tensors of 262 size Batches X N x 1 | 4. Each key corresponding to a class. 263 """ 264 select_threshold = 0.0 if select_threshold is None else select_threshold 265 with tf.name_scope(scope, 'ssd_bboxes_select_layer', 266 [predictions_layer, localizations_layer]): 267 # Reshape features: Batches x N x N_labels | 4 268 p_shape = tfe.get_shape(predictions_layer) 269 predictions_layer = tf.reshape(predictions_layer, 270 tf.stack([p_shape[0], -1, p_shape[-1]])) 271 l_shape = tfe.get_shape(localizations_layer) 272 localizations_layer = tf.reshape(localizations_layer, 273 tf.stack([l_shape[0], -1, l_shape[-1]])) 274 275 d_scores = {} 276 d_bboxes = {} 277 for c in range(0, num_classes): 278 if c != ignore_class: #如果不是背景类别 279 # Remove boxes under the threshold. #去掉低于阈值的box 280 scores = predictions_layer[:, :, c] #预测为第c类别的得分值 281 fmask = tf.cast(tf.greater_equal(scores, select_threshold), scores.dtype) 282 scores = scores * fmask #保留得分值大于阈值的得分 283 bboxes = localizations_layer * tf.expand_dims(fmask, axis=-1) 284 # Append to dictionary. 285 d_scores[c] = scores 286 d_bboxes[c] = bboxes 287 288 return d_scores, d_bboxes #返回字典,每个字典里是对应某类的预测权重和框位置信息; 289 290 291 def tf_ssd_bboxes_select(predictions_net, localizations_net, #输入:SSD网络输出的预测层list;定位层list;类别选择框阈值(None表示都选) 292 select_threshold=None, #返回一个字典,key为类别,值为得分和bbox坐标 293 num_classes=21, #包含了背景类别 294 ignore_class=0, #第0类是背景 295 scope=None): 296 """Extract classes, scores and bounding boxes from network output layers. 297 Batch-compatible: inputs are supposed to have batch-type shapes. 298 Args: 299 predictions_net: List of SSD prediction layers; 300 localizations_net: List of localization layers; 301 select_threshold: Classification threshold for selecting a box. All boxes 302 under the threshold are set to 'zero'. If None, no threshold applied. 303 Return: 304 d_scores, d_bboxes: Dictionary of scores and bboxes Tensors of #返回一个字典,其中key是对应类别,值对应得分值和坐标信息 305 size Batches X N x 1 | 4. Each key corresponding to a class. 306 """ 307 with tf.name_scope(scope, 'ssd_bboxes_select', 308 [predictions_net, localizations_net]): 309 l_scores = [] 310 l_bboxes = [] 311 for i in range(len(predictions_net)): 312 scores, bboxes = tf_ssd_bboxes_select_layer(predictions_net[i], 313 localizations_net[i], 314 select_threshold, 315 num_classes, 316 ignore_class) 317 l_scores.append(scores) #对应某个类别的得分 318 l_bboxes.append(bboxes) #对应某个类别的box坐标信息 319 # Concat results. 320 d_scores = {} 321 d_bboxes = {} 322 for c in l_scores[0].keys(): 323 ls = [s[c] for s in l_scores] 324 lb = [b[c] for b in l_bboxes] 325 d_scores[c] = tf.concat(ls, axis=1) 326 d_bboxes[c] = tf.concat(lb, axis=1) 327 return d_scores, d_bboxes 328 329 330 def tf_ssd_bboxes_select_layer_all_classes(predictions_layer, localizations_layer, 331 select_threshold=None): 332 """Extract classes, scores and bounding boxes from features in one layer. 333 Batch-compatible: inputs are supposed to have batch-type shapes. 334 Args: 335 predictions_layer: A SSD prediction layer; 336 localizations_layer: A SSD localization layer; 337 select_threshold: Classification threshold for selecting a box. If None, 338 select boxes whose classification score is higher than 'no class'. 339 Return: 340 classes, scores, bboxes: Input Tensors. #输出:类别,得分,框 341 """ 342 # Reshape features: Batches x N x N_labels | 4 343 p_shape = tfe.get_shape(predictions_layer) 344 predictions_layer = tf.reshape(predictions_layer, 345 tf.stack([p_shape[0], -1, p_shape[-1]])) 346 l_shape = tfe.get_shape(localizations_layer) 347 localizations_layer = tf.reshape(localizations_layer, 348 tf.stack([l_shape[0], -1, l_shape[-1]])) 349 # Boxes selection: use threshold or score > no-label criteria. 350 if select_threshold is None or select_threshold == 0: 351 # Class prediction and scores: assign 0. to 0-class 352 classes = tf.argmax(predictions_layer, axis=2) 353 scores = tf.reduce_max(predictions_layer, axis=2) 354 scores = scores * tf.cast(classes > 0, scores.dtype) 355 else: 356 sub_predictions = predictions_layer[:, :, 1:] 357 classes = tf.argmax(sub_predictions, axis=2) + 1 358 scores = tf.reduce_max(sub_predictions, axis=2) 359 # Only keep predictions higher than threshold. 360 mask = tf.greater(scores, select_threshold) 361 classes = classes * tf.cast(mask, classes.dtype) 362 scores = scores * tf.cast(mask, scores.dtype) 363 # Assume localization layer already decoded. 364 bboxes = localizations_layer 365 return classes, scores, bboxes #寻找当前特征图中类别,得分,bbox 366 367 368 def tf_ssd_bboxes_select_all_classes(predictions_net, localizations_net, 369 select_threshold=None, 370 scope=None): 371 """Extract classes, scores and bounding boxes from network output layers. 372 Batch-compatible: inputs are supposed to have batch-type shapes. 373 Args: 374 predictions_net: List of SSD prediction layers; 375 localizations_net: List of localization layers; 376 select_threshold: Classification threshold for selecting a box. If None, 377 select boxes whose classification score is higher than 'no class'. 378 Return: 379 classes, scores, bboxes: Tensors. 380 """ 381 with tf.name_scope(scope, 'ssd_bboxes_select', 382 [predictions_net, localizations_net]): 383 l_classes = [] 384 l_scores = [] 385 l_bboxes = [] 386 for i in range(len(predictions_net)): 387 classes, scores, bboxes = 388 tf_ssd_bboxes_select_layer_all_classes(predictions_net[i], 389 localizations_net[i], 390 select_threshold) 391 l_classes.append(classes) 392 l_scores.append(scores) 393 l_bboxes.append(bboxes) 394 395 classes = tf.concat(l_classes, axis=1) 396 scores = tf.concat(l_scores, axis=1) 397 bboxes = tf.concat(l_bboxes, axis=1) 398 return classes, scores, bboxes #返回所有特征图综合得出的类别,得分,bbox