• POJ 3356 AGTC(DP-最小编辑距离)


    Description

    Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    • Deletion: a letter in x is missing in y at a corresponding position.
    • Insertion: a letter in y is missing in x at a corresponding position.
    • Change: letters at corresponding positions are distinct

    Certainly, we would like to minimize the number of all possible operations.

    Illustration
    A G T A A G T * A G G C
    
    | | | | | | |
    A G T * C * T G A C G C
    Deletion: * in the bottom line
    Insertion: * in the top line
    Change: when the letters at the top and bottom are distinct

    This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

    A  G  T  A  A  G  T  A  G  G  C
    
    | | | | | | |
    A G T C T G * A C G C

    and 4 moves would be required (3 changes and 1 deletion).

    In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.

    Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

    Write a program that would minimize the number of possible operations to transform any string x into a string y.

    Input

    The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

    Output

    An integer representing the minimum number of possible operations to transform any string x into a string y.

    题目大意:给两个字符串s1、s2,输出最小编辑距离。

    思路:DP,用dp[i][j]代表s1[1..i]和s2[1..j]的最小编辑距离。那么若删除s1[i],那么dp[i][j] = dp[i - 1][j] + 1,若添加s2[j],那么dp[i][j] = dp[i][j - 1] + 1。若用s2[j]替换s1[i],那么dp[i][j] = dp[i - 1][j - 1] + 1。若s1[i] = s2[j],不操作,则dp[i][j] = dp[i - 1][j - 1]。取最小值。初始化dp[0][0] = 0,dp[i][0] = i,dp[0][j] = j。复杂度$O(n^2)$。

    PS:求LCS那个是错的。比如abd、acb,LCS是2,对应答案是1。但实际上答案是2,只能说明数据太水了。

    代码(0MS):

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 const int MAXN = 1010;
     8 
     9 char s1[MAXN], s2[MAXN];
    10 int dp[MAXN][MAXN];
    11 int n, m;
    12 
    13 int main() {
    14     while(scanf("%d%s", &n, s1 + 1) != EOF) {
    15         scanf("%d%s", &m, s2 + 1);
    16         dp[0][0] = 0;
    17         for(int i = 1; i <= n; ++i) dp[i][0] = i;
    18         for(int j = 1; j <= m; ++j) dp[0][j] = j;
    19         for(int i = 1; i <= n; ++i) {
    20             for(int j = 1; j <= m; ++j) {
    21                 dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
    22                 dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + (s1[i] != s2[j]));
    23             }
    24         }
    25         printf("%d
    ", dp[n][m]);
    26     }
    27 }
    View Code
  • 相关阅读:
    虚拟主机wordpress文件上传大小限制更改
    wordpress网站迁移
    JavaScript算法相关
    文章阅读(三)
    文章阅读(二)
    Image():强制让图片缓存起来
    JavaScript运算符与类型
    JavaScript权威指南--多媒体和图形编程
    JavaScript权威指南--脚本化HTTP
    JavaScript权威指南--事件处理
  • 原文地址:https://www.cnblogs.com/oyking/p/3698185.html
Copyright © 2020-2023  润新知