• POJ 3675 Telescope(简单多边形和圆的面积交)


    Description

    Updog is watching a plane object with a telescope. The field of vision in the telescope can be described as a circle. The center is at the origin and the radius is R. The object can be seen as a simple polygon of N vertexes. Updog wants to know the area of the part of the object that can be seen in the telescope.

    Input

    The input will contain several test cases. For each case:
    The first line contains only one real number R
    The second line contains an integer N. The following N lines contain two real numbers xi and yi each, which describe the coordinates of a vertex. Two vertexes in adjacent lines are also adjacent on the polygon. 
    Constraints: 3 ≤ N ≤50, 0.1 ≤ R ≤1000, -1000 ≤ xiyi ≤ 1000

    Output

    For each test case, output one real number on a separate line, which is the area of the part that can be seen. The result should be rounded to two decimal places.

     
    题目大意:给一个圆心在原点的圆,半径为r。再给一个简单多边形,问这个简单多边形和圆的公共面积是多少。
    思路:跟POJ2986一个思路,把简单多边形的每一个点和原点连线,就把这个多边形和圆的交变成了多个三角形与圆的交,根据有向面积的思路,加加减减就可以得到公共面积。
    PS:所谓简单多边形,是指所有边都不相交的多边形。
    PS2:之前求直线与圆的交点的时候,没留意到-EPS<delta<0,然后要求sqrt(delta)的情况……WA了很多很多次……计算几何真是可怕……
     
    代码(0MS):
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <iostream>
      4 #include <algorithm>
      5 #include <cmath>
      6 using namespace std;
      7 #define sqr(x) ((x) * (x))
      8 
      9 const int MAXN = 55;
     10 const double EPS = 1e-10;
     11 const double PI = acos(-1.0);//3.14159265358979323846
     12 const double INF = 1;
     13 
     14 inline int sgn(double x) {
     15     return (x > EPS) - (x < -EPS);
     16 }
     17 
     18 struct Point {
     19     double x, y, ag;
     20     Point() {}
     21     Point(double x, double y): x(x), y(y) {}
     22     void read() {
     23         scanf("%lf%lf", &x, &y);
     24     }
     25     bool operator == (const Point &rhs) const {
     26         return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0;
     27     }
     28     bool operator < (const Point &rhs) const {
     29         if(y != rhs.y) return y < rhs.y;
     30         return x < rhs.x;
     31     }
     32     Point operator + (const Point &rhs) const {
     33         return Point(x + rhs.x, y + rhs.y);
     34     }
     35     Point operator - (const Point &rhs) const {
     36         return Point(x - rhs.x, y - rhs.y);
     37     }
     38     Point operator * (const double &b) const {
     39         return Point(x * b, y * b);
     40     }
     41     Point operator / (const double &b) const {
     42         return Point(x / b, y / b);
     43     }
     44     double operator * (const Point &rhs) const {
     45         return x * rhs.x + y * rhs.y;
     46     }
     47     double length() {
     48         return sqrt(x * x + y * y);
     49     }
     50     double angle() {
     51         return atan2(y, x);
     52     }
     53     Point unit() {
     54         return *this / length();
     55     }
     56     void makeAg() {
     57         ag = atan2(y, x);
     58     }
     59     void print() {
     60         printf("%.10f %.10f
    ", x, y);
     61     }
     62 };
     63 typedef Point Vector;
     64 
     65 double dist(const Point &a, const Point &b) {
     66     return (a - b).length();
     67 }
     68 
     69 double cross(const Point &a, const Point &b) {
     70     return a.x * b.y - a.y * b.x;
     71 }
     72 //ret >= 0 means turn right
     73 double cross(const Point &sp, const Point &ed, const Point &op) {
     74     return cross(sp - op, ed - op);
     75 }
     76 
     77 double area(const Point& a, const Point &b, const Point &c) {
     78     return fabs(cross(a - c, b - c)) / 2;
     79 }
     80 //counter-clockwise
     81 Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
     82     Point t = p - o;
     83     double x = t.x * cos(angle) - t.y * sin(angle);
     84     double y = t.y * cos(angle) + t.x * sin(angle);
     85     return Point(x, y) + o;
     86 }
     87 
     88 double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
     89     Point p1 = a - o, p2 = b - o;
     90     return (p1 * p2) / (p1.length() * p2.length());
     91 }
     92 
     93 double includedAngle(const Point &a, const Point &b, const Point &o) {
     94     return acos(cosIncludeAngle(a, b, o));
     95     /*
     96     double ret = abs((a - o).angle() - (b - o).angle());
     97     if(sgn(ret - PI) > 0) ret = 2 * PI - ret;
     98     return ret;
     99     */
    100 }
    101 
    102 struct Seg {
    103     Point st, ed;
    104     double ag;
    105     Seg() {}
    106     Seg(Point st, Point ed): st(st), ed(ed) {}
    107     void read() {
    108         st.read(); ed.read();
    109     }
    110     void makeAg() {
    111         ag = atan2(ed.y - st.y, ed.x - st.x);
    112     }
    113 };
    114 typedef Seg Line;
    115 
    116 //ax + by + c > 0
    117 Line buildLine(double a, double b, double c) {
    118     if(sgn(a) == 0 && sgn(b) == 0) return Line(Point(sgn(c) > 0 ? -1 : 1, INF), Point(0, INF));
    119     if(sgn(a) == 0) return Line(Point(sgn(b), -c/b), Point(0, -c/b));
    120     if(sgn(b) == 0) return Line(Point(-c/a, 0), Point(-c/a, sgn(a)));
    121     if(b < 0) return Line(Point(0, -c/b), Point(1, -(a + c) / b));
    122     else return Line(Point(1, -(a + c) / b), Point(0, -c/b));
    123 }
    124 
    125 void moveRight(Line &v, double r) {
    126     double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
    127     dx = dx / dist(v.st, v.ed) * r;
    128     dy = dy / dist(v.st, v.ed) * r;
    129     v.st.x += dy; v.ed.x += dy;
    130     v.st.y -= dx; v.ed.y -= dx;
    131 }
    132 
    133 bool isOnSeg(const Seg &s, const Point &p) {
    134     return (p == s.st || p == s.ed) ||
    135         (((p.x - s.st.x) * (p.x - s.ed.x) < 0 ||
    136           (p.y - s.st.y) * (p.y - s.ed.y) < 0) &&
    137          sgn(cross(s.ed, p, s.st)) == 0);
    138 }
    139 
    140 bool isInSegRec(const Seg &s, const Point &p) {
    141     return sgn(min(s.st.x, s.ed.x) - p.x) <= 0 && sgn(p.x - max(s.st.x, s.ed.x)) <= 0
    142         && sgn(min(s.st.y, s.ed.y) - p.y) <= 0 && sgn(p.y - max(s.st.y, s.ed.y)) <= 0;
    143 }
    144 
    145 bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
    146     return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
    147         (max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
    148         (max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
    149         (max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
    150         (cross(s2, e1, s1) * cross(e1, e2, s1) >= 0) &&
    151         (cross(s1, e2, s2) * cross(e2, e1, s2) >= 0);
    152 }
    153 
    154 bool isIntersected(const Seg &a, const Seg &b) {
    155     return isIntersected(a.st, a.ed, b.st, b.ed);
    156 }
    157 
    158 bool isParallel(const Seg &a, const Seg &b) {
    159     return sgn(cross(a.ed - a.st, b.ed - b.st)) == 0;
    160 }
    161 
    162 //return Ax + By + C =0 's A, B, C
    163 void Coefficient(const Line &L, double &A, double &B, double &C) {
    164     A = L.ed.y - L.st.y;
    165     B = L.st.x - L.ed.x;
    166     C = L.ed.x * L.st.y - L.st.x * L.ed.y;
    167 }
    168 //point of intersection
    169 Point operator * (const Line &a, const Line &b) {
    170     double A1, B1, C1;
    171     double A2, B2, C2;
    172     Coefficient(a, A1, B1, C1);
    173     Coefficient(b, A2, B2, C2);
    174     Point I;
    175     I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
    176     I.y =   (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
    177     return I;
    178 }
    179 
    180 bool isEqual(const Line &a, const Line &b) {
    181     double A1, B1, C1;
    182     double A2, B2, C2;
    183     Coefficient(a, A1, B1, C1);
    184     Coefficient(b, A2, B2, C2);
    185     return sgn(A1 * B2 - A2 * B1) == 0 && sgn(A1 * C2 - A2 * C1) == 0 && sgn(B1 * C2 - B2 * C1) == 0;
    186 }
    187 
    188 double Point_to_Line(const Point &p, const Line &L) {
    189     return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
    190 }
    191 
    192 double Point_to_Seg(const Point &p, const Seg &L) {
    193     if(sgn((L.ed - L.st) * (p - L.st)) < 0) return dist(p, L.st);
    194     if(sgn((L.st - L.ed) * (p - L.ed)) < 0) return dist(p, L.ed);
    195     return Point_to_Line(p, L);
    196 }
    197 
    198 double Seg_to_Seg(const Seg &a, const Seg &b) {
    199     double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
    200     double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
    201     return min(ans1, ans2);
    202 }
    203 
    204 struct Circle {
    205     Point c;
    206     double r;
    207     Circle() {}
    208     Circle(Point c, double r): c(c), r(r) {}
    209     void read() {
    210         c.read();
    211         scanf("%lf", &r);
    212     }
    213     double area() const {
    214         return PI * r * r;
    215     }
    216     bool contain(const Circle &rhs) const {
    217         return sgn(dist(c, rhs.c) + rhs.r - r) <= 0;
    218     }
    219     bool contain(const Point &p) const {
    220         return sgn(dist(c, p) - r) <= 0;
    221     }
    222     bool intersect(const Circle &rhs) const {
    223         return sgn(dist(c, rhs.c) - r - rhs.r) < 0;
    224     }
    225     bool tangency(const Circle &rhs) const {
    226         return sgn(dist(c, rhs.c) - r - rhs.r) == 0;
    227     }
    228     Point pos(double angle) const {
    229         Point p = Point(c.x + r, c.y);
    230         return rotate(p, angle, c);
    231     }
    232 };
    233 
    234 double CommonArea(const Circle &A, const Circle &B) {
    235     double area = 0.0;
    236     const Circle & M = (A.r > B.r) ? A : B;
    237     const Circle & N = (A.r > B.r) ? B : A;
    238     double D = dist(M.c, N.c);
    239     if((D < M.r + N.r) && (D > M.r - N.r)) {
    240         double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
    241         double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
    242         double alpha = 2 * acos(cosM);
    243         double beta = 2 * acos(cosN);
    244         double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
    245         double TN = 0.5 * N.r * N.r * (beta - sin(beta));
    246         area = TM + TN;
    247     }
    248     else if(D <= M.r - N.r) {
    249         area = N.area();
    250     }
    251     return area;
    252 }
    253 
    254 int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
    255     double angle = cosIncludeAngle(s.ed, cir.c, s.st);
    256     //double angle1 = cos(includedAngle(s.ed, cir.c, s.st));
    257     double B = dist(cir.c, s.st);
    258     double a = 1, b = -2 * B * angle, c = sqr(B) - sqr(cir.r);
    259     double delta = sqr(b) - 4 * a * c;
    260     if(sgn(delta) < 0) return 0;
    261     if(sgn(delta) == 0) delta = 0;
    262     double x1 = (-b - sqrt(delta)) / (2 * a), x2 = (-b + sqrt(delta)) / (2 * a);
    263     Vector v = (s.ed - s.st).unit();
    264     p1 = s.st + v * x1;
    265     p2 = s.st + v * x2;
    266     return 1 + sgn(delta);
    267 }
    268 
    269 double CommonArea(const Circle &cir, Point p1, Point p2) {
    270     if(p1 == cir.c || p2 == cir.c) return 0;
    271     if(cir.contain(p1) && cir.contain(p2)) {
    272         return area(cir.c, p1, p2);
    273     } else if(!cir.contain(p1) && !cir.contain(p2)) {
    274         Point q1, q2;
    275         int t = intersection(Line(p1, p2), cir, q1, q2);
    276         if(t == 0) {
    277             double angle = includedAngle(p1, p2, cir.c);
    278             return 0.5 * sqr(cir.r) * angle;
    279         } else {
    280             double angle1 = includedAngle(p1, p2, cir.c);
    281             double angle2 = includedAngle(q1, q2, cir.c);
    282             if(isInSegRec(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
    283             else return 0.5 * sqr(cir.r) * angle1;
    284         }
    285     } else {
    286         if(cir.contain(p2)) swap(p1, p2);
    287         Point q1, q2;
    288         intersection(Line(p1, p2), cir, q1, q2);
    289         double angle = includedAngle(q2, p2, cir.c);
    290         double a = area(cir.c, p1, q2);
    291         double b = 0.5 * sqr(cir.r) * angle;
    292         return a + b;
    293     }
    294 }
    295 
    296 struct Triangle {
    297     Point p[3];
    298     Triangle() {}
    299     Triangle(Point *t) {
    300         for(int i = 0; i < 3; ++i) p[i] = t[i];
    301     }
    302     void read() {
    303         for(int i = 0; i < 3; ++i) p[i].read();
    304     }
    305     double area() const {
    306         return ::area(p[0], p[1], p[2]);
    307     }
    308     Point& operator[] (int i) {
    309         return p[i];
    310     }
    311 };
    312 
    313 double CommonArea(Triangle tir, const Circle &cir) {
    314     double ret = 0;
    315     ret += sgn(cross(tir[0], cir.c, tir[1])) * CommonArea(cir, tir[0], tir[1]);
    316     ret += sgn(cross(tir[1], cir.c, tir[2])) * CommonArea(cir, tir[1], tir[2]);
    317     ret += sgn(cross(tir[2], cir.c, tir[0])) * CommonArea(cir, tir[2], tir[0]);
    318     return abs(ret);
    319 }
    320 
    321 struct Poly {
    322     int n;
    323     Point p[MAXN];//p[n] = p[0]
    324     void init(Point *pp, int nn) {
    325         n = nn;
    326         for(int i = 0; i < n; ++i) p[i] = pp[i];
    327         p[n] = p[0];
    328     }
    329     double area() {
    330         if(n < 3) return 0;
    331         double s = p[0].y * (p[n - 1].x - p[1].x);
    332         for(int i = 1; i < n; ++i)
    333             s += p[i].y * (p[i - 1].x - p[i + 1].x);
    334         return s / 2;
    335     }
    336 };
    337 //the convex hull is clockwise
    338 void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
    339     sort(p, p + n);
    340     top = 1;
    341     stk[0] = 0; stk[1] = 1;
    342     for(int i = 2; i < n; ++i) {
    343         while(top && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
    344         stk[++top] = i;
    345     }
    346     int len = top;
    347     stk[++top] = n - 2;
    348     for(int i = n - 3; i >= 0; --i) {
    349         while(top != len && cross(p[i], p[stk[top]], p[stk[top - 1]]) <= 0) --top;
    350         stk[++top] = i;
    351     }
    352 }
    353 //use for half_planes_cross
    354 bool cmpAg(const Line &a, const Line &b) {
    355     if(sgn(a.ag - b.ag) == 0)
    356         return sgn(cross(b.ed, a.st, b.st)) < 0;
    357     return a.ag < b.ag;
    358 }
    359 //clockwise, plane is on the right
    360 bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
    361     int i, n;
    362     sort(v, v + vn, cmpAg);
    363     for(i = n = 1; i < vn; ++i) {
    364         if(sgn(v[i].ag - v[i-1].ag) == 0) continue;
    365         v[n++] = v[i];
    366     }
    367     int head = 0, tail = 1;
    368     deq[0] = v[0], deq[1] = v[1];
    369     for(i = 2; i < n; ++i) {
    370         if(isParallel(deq[tail - 1], deq[tail]) || isParallel(deq[head], deq[head + 1]))
    371             return false;
    372         while(head < tail && sgn(cross(v[i].ed, deq[tail - 1] * deq[tail], v[i].st)) > 0)
    373             --tail;
    374         while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + 1], v[i].st)) > 0)
    375             ++head;
    376         deq[++tail] = v[i];
    377     }
    378     while(head < tail && sgn(cross(deq[head].ed, deq[tail - 1] * deq[tail], deq[head].st)) > 0)
    379         --tail;
    380     while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + 1], deq[tail].st)) > 0)
    381         ++head;
    382     if(tail <= head + 1) return false;
    383     res.n = 0;
    384     for(i = head; i < tail; ++i)
    385         res.p[res.n++] = deq[i] * deq[i + 1];
    386     res.p[res.n++] = deq[head] * deq[tail];
    387     res.n = unique(res.p, res.p + res.n) - res.p;
    388     res.p[res.n] = res.p[0];
    389     return true;
    390 }
    391 
    392 //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
    393 double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
    394     double dia = 0;
    395     int q = 1;
    396     for(int i = 0; i < res.n - 1; ++i) {
    397         while(sgn(cross(res.p[i], res.p[q + 1], res.p[i + 1]) - cross(res.p[i], res.p[q], res.p[i + 1])) > 0)
    398             q = (q + 1) % (res.n - 1);
    399         if(sgn(dist(res.p[i], res.p[q]) - dia) > 0) {
    400             dia = dist(res.p[i], res.p[q]);
    401             ix = i; jx = q;
    402         }
    403         if(sgn(dist(res.p[i + 1], res.p[q]) - dia) > 0) {
    404             dia = dist(res.p[i + 1], res.p[q]);
    405             ix = i + 1; jx = q;
    406         }
    407     }
    408     return dia;
    409 }
    410 //a and b must be clockwise, find the minimum distance between two convex hull
    411 double half_rotating_calipers(Poly &a, Poly &b) {
    412     int sa = 0, sb = 0;
    413     for(int i = 0; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < 0) sa = i;
    414     for(int i = 0; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < 0) sb = i;
    415     double tmp, ans = dist(a.p[0], b.p[0]);
    416     for(int i = 0; i < a.n; ++i) {
    417         while(sgn(tmp = cross(a.p[sa], a.p[sa + 1], b.p[sb + 1]) - cross(a.p[sa], a.p[sa + 1], b.p[sb])) > 0)
    418             sb = (sb + 1) % (b.n - 1);
    419         if(sgn(tmp) < 0) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + 1])));
    420         else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + 1]), Seg(b.p[sb], b.p[sb + 1])));
    421         sa = (sa + 1) % (a.n - 1);
    422     }
    423     return ans;
    424 }
    425 
    426 double rotating_calipers(Poly &a, Poly &b) {
    427     return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
    428 }
    429 
    430 /*******************************************************************************************/
    431 
    432 Point p[MAXN];
    433 Circle cir;
    434 double r;
    435 int n;
    436 
    437 int main() {
    438     while(scanf("%lf", &r) != EOF) {
    439         scanf("%d", &n);
    440         for(int i = 0; i < n; ++i) p[i].read();
    441         p[n] = p[0];
    442         cir = Circle(Point(0, 0), r);
    443         double ans = 0;
    444         for(int i = 0; i < n; ++i)
    445             ans += sgn(cross(p[i], Point(0, 0), p[i + 1])) * CommonArea(cir, p[i], p[i + 1]);
    446         printf("%.2f
    ", fabs(ans));
    447     }
    448 }
    View Code
  • 相关阅读:
    jupyter notebook 和 opencv
    AMD 处理器 Ubuntu 16.04 LTS 配置 opencv、caffe 小结
    caffe 在 windows 使用
    MATLAB数字图像处理
    游记(5)
    POJ-1789-Truck History 解题报告
    POJ-2560-Freckles 解题报告
    POJ-1308-Is It A Tree? 解题报告
    POJ-1182-食物链 解题报告
    POJ-1861-Network 解题报告
  • 原文地址:https://www.cnblogs.com/oyking/p/3438955.html
Copyright © 2020-2023  润新知