• [转]乐观锁、悲观锁、死锁的区别


      事务:是访问并可能更新数据库中各种数据项的一个程序执行单元。 是恢复和并发控制的基本单位。具有原子性,一致性,隔离性,持久性。

    1. 原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
    2. 一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
    3. 隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
    4. 持久性(durability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。
    ---------------------------------------------------------------------------------------------------------------------------------------------------------------

      锁:我们知道,最常用的处理多用户并发访问的方法是加锁。当一个用户锁住数据库中的某个对象时,其他用户就不能再访问该对象。加锁对并发访问的影响体现在锁的粒度上。比如,放在一个表上的锁限制对整个表的并发访问;放在数据页上的锁限制了对整个数据页的访问;放在行上的锁只限制对该行的并发访问。可见行锁粒度最小,并发访问最好,页锁粒度最大,表锁介于2者之间。

      锁有两种:悲观锁和乐观锁。悲观锁假定其他用户企图访问或者改变你正在访问、更改的对象的概率是很高的,因此在悲观锁的环境中,在你开始改变此对象之前就将该对象锁住,并且直到你提交了所作的更改之后才释放锁。悲观的缺陷是不论是页锁还是行锁,加锁的时间可能会很长,这样可能会长时间的限制其他用户的访问,也就是说悲观锁的并发访问性不好。与悲观锁相反,乐观锁则认为其他用户企图改变你正在更改的对象的概率是很小的,因此乐观锁直到你准备提交所作的更改时才将对象锁住,当你读取以及改变该对象时并不加锁。可见乐观锁加锁的时间要比悲观锁短,乐观锁可以用较大的锁粒度获得较好的并发访问性能。但是如果第二个用户恰好在第一个用户提交更改之前读取了该对象,那么当他完成了自己的更改进行提交时,数据库就会发现该对象已经变化了,这样,第二个用户不得不重新读取该对象并作出更改。这说明在乐观锁环境中,会增加并发用户读取对象的次数。 

      从数据库厂商的角度看,使用乐观的页锁是比较好的,尤其在影响很多行的批量操作中可以放比较少的锁,从而降低对资源的需求提高数据库的性能。再考虑聚集索引。在数据库中记录是按照聚集索引的物理顺序存放的。如果使用页锁,当两个用户同时访问更改位于同一数据页上的相邻两行时,其中一个用户必须等待另一个用户释放锁,这会明显地降低系统的性能。interbase和大多数关系数据库一样,采用的是乐观锁,而且读锁是共享的,写锁是排他的。可以在一个读锁上再放置读锁,但不能再放置写锁;你不能在写锁上再放置任何锁。锁是目前解决多用户并发访问的有效手段。

      死锁:当二或多个工作各自具有某个资源的锁定,但其它工作尝试要锁定此资源,而造成工作永久封锁彼此时,会发生死锁。例如:

    1. 事务 A 取得数据列 1 的共享锁定。

    2. 事务B 取得数据列 2 的共享锁定。

    3. 事务A 现在要求数据列 2 的独占锁定,但会被封锁直到事务B 完成并释出对数据列 2 的共享锁定为止。

    4. 事务B 现在要求数据列 1 的独占锁定,但会被封锁直到事务A 完成并释出对数据列 1 的共享锁定为止。

    等到事务B 完成后,事务A 才能完成,但事务B 被事务A 封锁了。这个状况也称为「循环相依性」(Cyclic Dependency)。事务A 相依于事务B,并且事务B 也因为相依于事务A 而封闭了这个循环。

    例如以下操作就会产生死锁,两个连接互相阻塞对方的update。

    连接1:

      begin tran

        select * from customers

        update customers set CompanyName = CompanyName

        waitfor delay '00:00:05'

        select * from Employees

        –因为Employees被连接2锁住了,所以这里会阻塞。

        update Employees set LastName = LastName

      commit tran

    连接2:

      begin tran

        select * from Employees

        update Employees set LastName = LastName

        waitfor delay '00:00:05'

        select * from customers

        --因为customers被连接1锁住了,所以这里会阻塞。

        update customers set CompanyName = CompanyName

      commit tran

    SQL Server遇到死锁时会自动杀死其中一个事务,而另一个事务会正常结束(提交或回滚)。

    SQL Server对杀死的连接返回错误代码是1205,异常提示是:

    Your transaction (process ID #52) was deadlocked on {lock | communication buffer | thRead} resources with another process and has been chosen as the deadlock victim. Rerun your transaction.

     ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    乐观的并发策略——基于CAS的自旋

    悲观者与乐观者的做事方式完全不一样,悲观者的人生观是一件事情我必须要百分之百完全控制才会去做,否则就认为这件事情一定会出问题;而乐观者的人生观则相反,凡事不管最终结果如何,他都会先尝试去做,大不了最后不成功。这就是悲观锁与乐观锁的区别,悲观锁会把整个对象加锁占为自有后才去做操作,乐观锁不获取锁直接做操作,然后通过一定检测手段决定是否更新数据。这一节将对乐观锁进行深入探讨。

    上节讨论的Synchronized互斥锁属于悲观锁,它有一个明显的缺点,它不管数据存不存在竞争都加锁,随着并发量增加,且如果锁的时间比较长,其性能开销将会变得很大。有没有办法解决这个问题?答案是基于冲突检测的乐观锁。这种模式下,已经没有所谓的锁概念了,每条线程都直接先去执行操作,计算完成后检测是否与其他线程存在共享数据竞争,如果没有则让此操作成功,如果存在共享数据竞争则可能不断地重新执行操作和检测,直到成功为止,可叫CAS自旋。

    乐观锁的核心算法是CAS(Compareand Swap,比较并交换),它涉及到三个操作数:内存值、预期值、新值。当且仅当预期值和内存值相等时才将内存值修改为新值。这样处理的逻辑是,首先检查某块内存的值是否跟之前我读取时的一样,如不一样则表示期间此内存值已经被别的线程更改过,舍弃本次操作,否则说明期间没有其他线程对此内存值操作,可以把新值设置给此块内存。如图2-5-4-1,有两个线程可能会差不多同时对某内存操作,线程二先读取某内存值作为预期值,执行到某处时线程二决定将新值设置到内存块中,如果线程一在此期间修改了内存块,则通过CAS即可以检测出来,假如检测没问题则线程二将新值赋予内存块。

    图2-5-4-1

    假如你足够细心你可能会发现一个疑问,比较和交换,从字面上就有两个操作了,更别说实际CAS可能会有更多的执行指令,他们是原子性的吗?如果非原子性又怎么保证CAS操作期间出现并发带来的问题?我是不是需要用上节提到的互斥锁来保证他的原子性操作?CAS肯定是具有原子性的,不然就谈不上在并发中使用了,但这个原子性是由CPU硬件指令实现保证的,即使用JNI调用native方法调用由C++编写的硬件级别指令,jdk中提供了Unsafe类执行这些操作。另外,你可能想着CAS是通过互斥锁来实现原子性的,这样确实能实现,但用这种方式来保证原子性显示毫无意义。下面一个伪代码加深对CAS的理解:

    public class AtomicInt {

       private volatile int value;

       public final int get() {

           return value;

        }

    publicfinal int getAndIncrement() {

           for (;;) {

               int current = get();

               int next = current + 1;

               if (compareAndSet(current, next))

                    return current;

           }

        }

       

       public final boolean compareAndSet(int expect, int update) {

         Unsafe类提供的硬件级别的compareAndSwapInt方法;

        }

    }

    其中最重要的方法是getAndIncrement方法,它里面实现了基于CAS的自旋。

    现在已经了解乐观锁及CAS相关机制,乐观锁避免了悲观锁独占对象的现象,同时也提高了并发性能,但它也有缺点:

    ①  观锁只能保证一个共享变量的原子操作。如上例子,自旋过程中只能保证value变量的原子性,这时如果多一个或几个变量,乐观锁将变得力不从心,但互斥锁能轻易解决,不管对象数量多少及对象颗粒度大小。

    ②  长时间自旋可能导致开销大。假如CAS长时间不成功而一直自旋,会给CPU带来很大的开销。

    ③  ABA问题。CAS的核心思想是通过比对内存值与预期值是否一样而判断内存值是否被改过,但这个判断逻辑不严谨,假如内存值原来是A,后来被一条线程改为B,最后又被改成了A,则CAS认为此内存值并没有发生改变,但实际上是有被其他线程改过的,这种情况对依赖过程值的情景的运算结果影响很大。解决的思路是引入版本号,每次变量更新都把版本号加一。

    乐观锁是对悲观锁的改进,虽然它也有缺点,但它确实已经成为提高并发性能的主要手段,而且jdk中的并发包也大量使用基于CAS的乐观锁。

  • 相关阅读:
    ubuntu服务器全部署
    果蝇优化算法(FOA)
    小波神经网络(WNN)
    R语言预测实战(第二章--预测方法论)
    ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
    R语言预测实战(第一章)
    卷积神经网络(CNN)
    RSS(简易信息聚合)和jieba(第三方分词组件)
    第四章--基于概率论的分类方法:朴素贝叶斯--新闻分类(三)
    第四章--基于概率论的分类方法:朴素贝叶斯--过滤垃圾邮件(二)
  • 原文地址:https://www.cnblogs.com/oxspirt/p/8434139.html
Copyright © 2020-2023  润新知