• 母函数


    母函数分为无限个,有限个。

    有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

    考虑用母函数来解决这个问题:

    我们假设x表示砝码,x的指数表示砝码的重量,这样:

    1个1克的砝码可以用函数1+1*x^1表示,

    1个2克的砝码可以用函数1+1*x^2表示,

    1个3克的砝码可以用函数1+1*x^3表示,

    1个4克的砝码可以用函数1+1*x^4表示,

    上面这四个式子懂吗?

    我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

    那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

    所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

    不知道大家理解没,我们这里结合前面那句话:

    “把组合问题的加法法则和幂级数的乘幂对应起来“

    接着讨论上面的1+x^2,这里x前面的系数有什么意义?

    这里的系数表示状态数(方案数)

    1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

    所以,前面说的那句话的意义大家可以理解了吧?

    几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

    (1+x)(1+x^2)(1+x^3)(1+x^4)

    =(1+x+x^2+x^4)(1+x^3+^4+x^7)

    =1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

    从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

    例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

    故称出6克的方案数有2种,称出10克的方案数有1种 。

    第二种:

    有限个

    改版母函数:

  • 相关阅读:
    java连接远程linux的redis
    Mac下Sublime Text 3安装配置
    矩阵覆盖
    Mac下配置Tomcat
    用 O(1) 时间检测整数 n 是否是 2 的幂次。
    快速编程之禅
    如何在centos 7.4 上安装 python 3.6
    大众点评实时监控系统CAT的那些坑
    如何在 centos 7.3 上安装 caffe 深度学习工具
    为什么中文编程项目失败率特别高?
  • 原文地址:https://www.cnblogs.com/ouyang_wsgwz/p/6544842.html
Copyright © 2020-2023  润新知