• opencv::证件照背景替换


    证件照背景替换
        K-Means 
        背景融合 – 高斯模糊 
        遮罩层生成 
    #include <opencv2/opencv.hpp>
    #include <iostream>
    
    using namespace cv;
    using namespace std;
    
    Mat mat_to_samples(Mat &image);
    int main(int argc, char** argv) {
        Mat src = imread("D:/images/toux.jpg");
        if (src.empty()) {
            printf("could not load image...
    ");
            return -1;
        }
        namedWindow("input image", CV_WINDOW_AUTOSIZE);
        imshow("input image", src);
    
        // 组装数据
        Mat points = mat_to_samples(src);
    
        // 运行KMeans
        int numCluster = 4;
        Mat labels;
        Mat centers;
        TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
        kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
    
        // 去背景+遮罩生成
        Mat mask = Mat::zeros(src.size(), CV_8UC1);
        int index = src.rows * 2 + 2;
        int cindex = labels.at<int>(index, 0);
        int height = src.rows;
        int width = src.cols;
        //bian
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row * width + col;
                int label = labels.at<int>(index, 0);
                if (label == cindex) { // 背景
                    mask.at<uchar>(row, col) = 0;
                }
                else {
                    mask.at<uchar>(row, col) = 255;
                }
            }
        }
        //imshow("mask", mask);
    
        // 腐蚀 + 高斯模糊
        Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
        erode(mask, mask, k);
        //imshow("erode-mask", mask);
        GaussianBlur(mask, mask, Size(3, 3), 0, 0);
        //imshow("Blur Mask", mask);
    
        // 通道混合
        RNG rng(12345);
        Vec3b color;
        color[0] = 217; // rng.uniform(0, 255);
        color[1] = 60;  // rng.uniform(0, 255);
        color[2] = 160; // rng.uniform(0, 255);
        Mat result(src.size(), src.type());
    
        double w = 0.0;
        int b = 0,  g = 0,  r = 0;
        int b1 = 0, g1 = 0, r1 = 0;
        int b2 = 0, g2 = 0, r2 = 0;
    
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                int m = mask.at<uchar>(row, col);
                if (m == 255) {
                    result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col); // 前景
                }
                else if (m == 0) {
                    result.at<Vec3b>(row, col) = color; // 背景
                }
                else {
                    //权重
                    w = m / 255.0;
                    b1 = src.at<Vec3b>(row, col)[0];
                    g1 = src.at<Vec3b>(row, col)[1];
                    r1 = src.at<Vec3b>(row, col)[2];
    
                    b2 = color[0];
                    g2 = color[1];
                    r2 = color[2];
    
                    b = b1 * w + b2 * (1.0 - w);
                    g = g1 * w + g2 * (1.0 - w);
                    r = r1 * w + r2 * (1.0 - w);
    
                    result.at<Vec3b>(row, col)[0] = b;
                    result.at<Vec3b>(row, col)[1] = g;
                    result.at<Vec3b>(row, col)[2] = r;
                }
            }
        }
        imshow("背景替换", result);
    
        waitKey(0);
        return 0;
    }
    
    Mat mat_to_samples(Mat &image) {
        int w = image.cols;
        int h = image.rows;
        int samplecount = w * h;
        int dims = image.channels();
        Mat points(samplecount, dims, CV_32F, Scalar(10));
    
        int index = 0;
        for (int row = 0; row < h; row++) {
            for (int col = 0; col < w; col++) {
                index = row * w + col;
                Vec3b bgr = image.at<Vec3b>(row, col);
                points.at<float>(index, 0) = static_cast<int>(bgr[0]);
                points.at<float>(index, 1) = static_cast<int>(bgr[1]);
                points.at<float>(index, 2) = static_cast<int>(bgr[2]);
            }
        }
        return points;
    }
  • 相关阅读:
    ZOJ Bookcase
    C*++ Calculations
    STL <cctype>
    线段树单点更新+区间更新
    ZOJ Supermarket
    STL <cassert>
    算法导论<二>
    MV Maker [DP]
    LIS 最长有序子序列(递增/递减/非递增/非递减)
    LIS
  • 原文地址:https://www.cnblogs.com/osbreak/p/11751731.html
Copyright © 2020-2023  润新知