GMM方法概述:基于高斯混合模型期望最大化。
高斯混合模型 (GMM)
高斯分布与概率密度分布 - PDF
初始化
初始化EM模型:
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(points, noArray(), labels, noArray());
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace cv::ml;
using namespace std;
int main(int argc, char** argv) {
Mat img = Mat::zeros(500, 500, CV_8UC3);
RNG rng(12345);
Scalar colorTab[] = {
Scalar(0, 0, 255),
Scalar(0, 255, 0),
Scalar(255, 0, 0),
Scalar(0, 255, 255),
Scalar(255, 0, 255)
};
int numCluster = rng.uniform(2, 5);
printf("number of clusters : %d
", numCluster);
int sampleCount = rng.uniform(5, 1000);
Mat points(sampleCount, 2, CV_32FC1);
Mat labels;
// 生成随机数
for (int k = 0; k < numCluster; k++) {
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k*sampleCount / numCluster,
k == numCluster - 1 ? sampleCount : (k + 1)*sampleCount / numCluster);
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
}
randShuffle(points, 1, &rng);
//初始化EM模型
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(points, noArray(), labels, noArray());
// 处理每个像素
Mat sample(1, 2, CV_32FC1);
for (int row = 0; row < img.rows; row++) {
for (int col = 0; col < img.cols; col++) {
sample.at<float>(0) = (float)col;
sample.at<float>(1) = (float)row;
int response = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar c = colorTab[response];
//填充
circle(img, Point(col, row), 1, c*0.75, -1);
}
}
// 画出采样数据
for (int i = 0; i < sampleCount; i++) {
Point p(cvRound(points.at<float>(i, 0)), points.at<float>(i, 1));
circle(img, p, 1, colorTab[labels.at<int>(i)], -1);
}
imshow("GMM-EM Demo", img);
waitKey(0);
return 0;
}
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace cv::ml;
using namespace std;
int main(int argc, char** argv) {
Mat src = imread("D:/images/cvtest.png");
if (src.empty()) {
printf("could not load iamge...
");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
// 初始化
int numCluster = 4;
const Scalar colors[] = {
Scalar(255, 0, 0),
Scalar(0, 255, 0),
Scalar(0, 0, 255),
Scalar(255, 255, 0)
};
int width = src.cols;
int height = src.rows;
int dims = src.channels();
int nsamples = width * height;
Mat points(nsamples, dims, CV_64FC1);
Mat labels;
Mat result = Mat::zeros(src.size(), CV_8UC3);
// 图像RGB像素数据转换为样本数据
int index = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
Vec3b rgb = src.at<Vec3b>(row, col);
points.at<double>(index, 0) = static_cast<int>(rgb[0]);
points.at<double>(index, 1) = static_cast<int>(rgb[1]);
points.at<double>(index, 2) = static_cast<int>(rgb[2]);
}
}
// EM Cluster Train
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(points, noArray(), labels, noArray());
// 对每个像素标记颜色与显示
Mat sample(dims, 1, CV_64FC1);
double time = getTickCount();
int r = 0, g = 0, b = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
/*index = row * width + col;
int label = labels.at<int>(index, 0);
Scalar c = colors[label];
result.at<Vec3b>(row, col)[0] = c[0];
result.at<Vec3b>(row, col)[1] = c[1];
result.at<Vec3b>(row, col)[2] = c[2];*/
b = src.at<Vec3b>(row, col)[0];
g = src.at<Vec3b>(row, col)[1];
r = src.at<Vec3b>(row, col)[2];
sample.at<double>(0) = b;
sample.at<double>(1) = g;
sample.at<double>(2) = r;
int response = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar c = colors[response];
result.at<Vec3b>(row, col)[0] = c[0];
result.at<Vec3b>(row, col)[1] = c[1];
result.at<Vec3b>(row, col)[2] = c[2];
}
}
printf("execution time(ms) : %.2f
", (getTickCount() - time) / getTickFrequency() * 1000);
imshow("EM-Segmentation", result);
waitKey(0);
return 0;
}