• opencv::自定义角点检测


    #include <opencv2/opencv.hpp>
    #include <iostream>
    
    #include <math.h>
    using namespace cv;
    using namespace std;
    const char* harris_win = "Custom Harris Corners Detector";
    const char* shitomasi_win = "Custom Shi-Tomasi Corners Detector";
    Mat src, gray_src;
    // harris corner response
    Mat harris_dst, harrisRspImg;
    double harris_min_rsp;
    double harris_max_rsp;
    // shi-tomasi corner response
    Mat shiTomasiRsp;
    double shitomasi_max_rsp;
    double shitomasi_min_rsp;
    int sm_qualitylevel = 30;
    // quality level
    int qualityLevel = 30;
    int max_count = 100;
    void CustomHarris_Demo(int, void*);
    void CustomShiTomasi_Demo(int, void*);
    int main(int argc, char** argv) {
        src = imread("D:/vcprojects/images/home.jpg");
        if (src.empty()) {
            printf("could not load image...
    ");
            return -1;
        }
        namedWindow("input image", CV_WINDOW_AUTOSIZE);
        imshow("input image", src);
        //灰度图
        cvtColor(src, gray_src, COLOR_BGR2GRAY);
        // 计算特征值
        int blockSize = 3;
        int ksize = 3;
        double k = 0.04;
        //对每个像素做处理
        harris_dst = Mat::zeros(src.size(), CV_32FC(6));
        harrisRspImg = Mat::zeros(src.size(), CV_32FC1);
        cornerEigenValsAndVecs(gray_src, harris_dst, blockSize, ksize, 4);
        // 计算响应
        for (int row = 0; row < harris_dst.rows; row++) {
            for (int col = 0; col < harris_dst.cols; col++) {
                double lambda1 =harris_dst.at<Vec6f>(row, col)[0];
                double lambda2 = harris_dst.at<Vec6f>(row, col)[1];
                harrisRspImg.at<float>(row, col) = lambda1*lambda2 - k*pow((lambda1 + lambda2), 2);
            }
        }
        minMaxLoc(harrisRspImg, &harris_min_rsp, &harris_max_rsp, 0, 0, Mat());
        namedWindow(harris_win, CV_WINDOW_AUTOSIZE);
        createTrackbar("Quality Value:", harris_win, &qualityLevel, max_count, CustomHarris_Demo);
        CustomHarris_Demo(0, 0);
    
        // 计算最小特征值
        shiTomasiRsp = Mat::zeros(src.size(), CV_32FC1);
        cornerMinEigenVal(gray_src, shiTomasiRsp, blockSize, ksize, 4);
        minMaxLoc(shiTomasiRsp, &shitomasi_min_rsp, &shitomasi_max_rsp, 0, 0, Mat());
        namedWindow(shitomasi_win, CV_WINDOW_AUTOSIZE);
        createTrackbar("Quality:", shitomasi_win, &sm_qualitylevel, max_count, CustomShiTomasi_Demo);
        CustomShiTomasi_Demo(0, 0);
    
        waitKey(0);
        return 0;
    }
    
    void CustomHarris_Demo(int, void*) {
        if (qualityLevel < 10) {
            qualityLevel = 10;
        }
        Mat resultImg = src.clone();
        float t = harris_min_rsp + (((double)qualityLevel) / max_count)*(harris_max_rsp - harris_min_rsp);
        for (int row = 0; row < src.rows; row++) {
            for (int col = 0; col < src.cols; col++) {
                float v = harrisRspImg.at<float>(row, col);
                if (v > t) {
                    circle(resultImg, Point(col, row), 2, Scalar(0, 0, 255), 2, 8, 0);
                }
            }
        }
    
        imshow(harris_win, resultImg);
    }
    
    void CustomShiTomasi_Demo(int, void*) {
        if (sm_qualitylevel < 20) {
            sm_qualitylevel = 20;
        }
    
        Mat resultImg = src.clone();
        float t = shitomasi_min_rsp + (((double)sm_qualitylevel) / max_count)*(shitomasi_max_rsp - shitomasi_min_rsp);
        for (int row = 0; row < src.rows; row++) {
            for (int col = 0; col < src.cols; col++) {
                float v = shiTomasiRsp.at<float>(row, col);
                if (v > t) {
                    circle(resultImg, Point(col, row), 2, Scalar(0, 0, 255), 2, 8, 0);
                }
            }
        }
        imshow(shitomasi_win, resultImg);
    }
  • 相关阅读:
    CVE-2019-0708
    windows powershell的常用命令
    sqli-lab(8)
    DVWA--CSP Bypass
    认清自己
    sqli-libs(7)
    DVWA--upload
    sqli-labs(6)
    python学习之路(22)
    BZOJ2434:[NOI2011]阿狸的打字机——题解
  • 原文地址:https://www.cnblogs.com/osbreak/p/11641748.html
Copyright © 2020-2023  润新知