• 贪婪算法硬币找零最优解问题证明


    1. 问题

    如果硬币的面值是c0, c1, …, ck,则贪婪算法总是用最少的硬币找零

    2. 证明

    2.1 一个硬币的找零方式可以用如下公式来表示

    m0c0 + m1c1 + … + mkck = S

    mi = 每种面值的硬币的数量(0, x)

    ci = 硬币的面值

    根据题意 S = m0c0 + m1c1 + … + mkck

    2.2 正面证明没有合适的公式推导,因为贪婪算法没有合适的公式表达,尝试反证

    假设有一种非贪婪算法的最优找零方案 S1 = m0c0 + m1c1 + … + mkck

    贪婪算法的找零方案 S2 = n0c0 + n1c1 + … + nkck

    假设从k开始,到x(x <= k)对应的面值的硬币时,mx != nx

    ∵贪婪算法每次都讲尽可能的使用最大面值的硬币找零,所以nx > mx (因为S2的找零方案不同于S1,所以一定会有这么一个x满足条件)

    我们考虑最小情况,nx - mx = 1

    1ck = c0 + (c-1)c0 + (c-1)c1 + … + (c-1)ck-1 > (c-1)c0 + (c-1)c1 + … + (c-1)ck-1

    ∵S1的找零方案中,m(m < k)不可能大于或等于c(当mx > c时,就可以将c个mx换成更高位的面值了,这样硬币数会减少)

    ∵S1 = m0c0 + m1c1 + … + mkck-1 <= (c-1)c0 + (c-1)c1 + … + (c-1)ck-1 < 1ck

    ∵S1中剩下的面值小于ck的硬币面值总和不会大于一个ck的面值

    ∴ S1 != S2

    ∴ S1不存在,S2的贪婪算法是最优解

    2.3 《离散数学及其应用》书中贪婪算法的反例

    有面值1, 10, 25的硬币,找零30。

    贪婪算法的解:5c0 + 0c1 + 1c2 =  5*1 + 0*10 + 1*25 = 30,共需6枚硬币

    而最优解是:0c0 + 3c1 + 0c2 =  0*1 + 3*10 + 0*25 = 30,只需3枚硬币

    因为用3枚10面值的硬币不能用任何25面值的硬币和10面值的硬币代替,所以换成高面值的硬币不一定会使硬币减少,所以2.2的证明无法在此应用

    3. 扩展

    从2.2的证明中可以看出,当贪婪算法是最优解时,只要cx = n*cx-1,2.2的证明同样是成立的

    所以硬币的面值是k0c, k1c, …, knc时(如2, 10, 50)时,也是成立的

  • 相关阅读:
    Linux crontab定时执行任务 命令格式与详细例子
    git的color configura
    Linux不用使用软件把纯文本文档转换成PDF文件的方法
    linux sar命令详细说明相关参数
    linux下sar tool command note
    Linux see 网卡当前流量
    安装调试Installing Odoo
    寻找[nginx] 由Lua 粘合的Nginx生态环境-- agentzh
    git检查与放弃本地的代码修改情况
    发现linux shell中$0,$?,$!等的特殊用法
  • 原文地址:https://www.cnblogs.com/organic/p/6151702.html
Copyright © 2020-2023  润新知