• 「hdu


    link。

    钦定 (i>j),研究得 ((x^i-1,x^j-1) ightleftharpoons(x^i-x^j,x^j-1) ightleftharpoons(x^j(x^{i-j}-1),x^j-1)),注意到 ((x^j,x^j-1)=1) 且当 ((a,c)=1)((ab,c)=(a,b)(a,c)),则原式 ( ightleftharpoons(x^{i-j}-1,x^j-1) ightleftharpoons(x^{imod j}-1,x^j-1) ightleftharpoons x^{(i,j)}-1)

    于是题目即求 (left(sumlimits_{i=1}^nsumlimits_{j=1}^nx^{(i,j)} ight)-n^2)。注意到 (1leqslant(i,j)leqslant n),容易想到研究每一个 ((i,j)) 的贡献次数,设其为 (f(x)),显然有 (f(x)=sumlimits_{i=1}^nsumlimits_{j=1}^n[(i,j)=x]),观察得 (f(x)=2 imesleft(sumlimits_{i=1}^{lfloorfrac{n}{x} floor}varphi(i) ight)-1),则答案为 (sumlimits_{i=1}^nx^icdot f(i)),整除分块 & 等比数列求和优化即可。

    #include <bits/stdc++.h>
    const int MOD = 1000000007;
    template <typename T>
    T add(T a, T b) {
      return (a + b) % MOD;
    }
    template <typename T, typename... Args>
    T add(T a, T b, Args... args) {
      return add(add(a, b), args...);
    }
    template <typename T>
    T sub(T a, T b) {
      return (a + MOD - b) % MOD;
    }
    template <typename T>
    T mul(T a, T b) {
      return a * static_cast<long long>(b) % MOD;
    }
    template <typename T, typename... Args>
    T mul(T a, T b, Args... args) {
      return mul(mul(a, b), args...);
    }
    template <typename T>
    void Add(T &a, T b) {
      a = add(a, b);
    }
    template <typename T, typename... Args>
    void Add(T &a, T b, Args... args) {
      Add(a, add(b, args...));
    }
    template <typename T>
    void Sub(T &a, T b) {
      a = sub(a, b);
    }
    template <typename T>
    void Mul(T &a, T b) {
      a = mul(a, b);
    }
    template <typename T, typename... Args>
    void Mul(T &a, T b, Args... args) {
      Mul(a, mul(b, args...));
    }
    int tag[1000100], tot, p[1000100], n, x, ph[1000100], f[1000100];
    void shai(int N) {
      tag[1] = ph[1] = 1;
      for (int i = 2; i <= N; ++i) {
        if (!tag[i]) {
          p[++tot] = i;
          ph[i] = i - 1;
        }
        for (int j = 1; j <= tot && i * p[j] <= N; ++j) {
          tag[i * p[j]] = 1;
          if (i % p[j] == 0) {
            ph[i * p[j]] = ph[i] * p[j];
            break;
          }
          ph[i * p[j]] = ph[i] * ph[p[j]];
        }
      }
      for (int i = 1; i <= N; ++i) Add(ph[i], ph[i - 1]);
      for (int i = 1; i <= N; ++i) f[i] = sub(mul(ph[i], 2), 1);
    }
    int fp(int x, int y) {
      int res = 1;
      for (; y; y >>= 1, Mul(x, x))
        if (y & 1) Mul(res, x);
      return res;
    }
    int Inv(int x) { return fp(x, MOD - 2); }
    int Sum(int n) { return mul(x, sub(1, fp(x, n)), Inv(sub(1, x))); }
    int Sum(int l, int r) { return sub(Sum(r), Sum(l - 1)); }
    signed main() {
      std::ios_base::sync_with_stdio(false);
      std::cin.tie(nullptr), std::cout.tie(nullptr);
      int T;
      shai(1e6);
      for (std::cin >> T; T; --T) {
        std::cin >> x >> n;
        if (x == 1) {
          std::cout << "0
    ";
          continue;
        }
        int res = 0;
        for (int l = 1, r; l <= n; l = r + 1) {
          r = n / (n / l);
          Add(res, mul(Sum(l, r), f[n / l]));
        }
        std::cout << sub(res, mul(n, n)) << '
    ';
      }
      return 0;
    }
    
  • 相关阅读:
    SQL Server2005重新安装不上的问题及其解决(转)
    取消2003默认共享
    自写生成实体类工具
    双核886针CPU简明制作教程
    VS 2008 在安装SP1后智能提示变成英文的解决办法
    VS2008 安装盘的问题
    拖放 DataGrid 列摘自MSDN
    VB.net SP1 的兼容性问题
    Windows Server 2008+VS2008
    Combobox 的解决方法
  • 原文地址:https://www.cnblogs.com/orchid-any/p/15182527.html
Copyright © 2020-2023  润新知