• Solution -「九省联考 2018」劈配


    Description

    Link.

    一年一度的综艺节目《中国新代码》又开始了。Zayid 从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了。

    轻车熟路的 Zayid 顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的:
    总共 (n) 名参赛选手(编号从 (1)(n))每人写出一份代码并介绍自己的梦想。接着由所有导师对这些选手进行排名。为了避免后续的麻烦,规定不存在排名并列的情况。

    同时,每名选手都将独立地填写一份志愿表,来对总共 (m) 位导师(编号从 (1)(m))作出评价。志愿表上包含了共 (m) 档志愿。对于每一档志愿,选手被允许填写最多 (C) 位导师,每位导师最多被每位选手填写一次(放弃某些导师也是被允许的)。

    在双方的工作都完成后,进行录取工作。每位导师都有自己战队的人数上限,这意味着可能有部分选手的较高志愿、甚至是全部志愿无法得到满足。

    节目组对 ‘‘前 (i) 名的录取结果最优’’ 作出如下定义:

    • (1) 名的录取结果最优,当且仅当第 (1) 名被其最高非空志愿录取(特别地,如果第 (1) 名没有填写志愿表,那么该选手出局)。
    • (i) 名的录取结果最优,当且仅当在前 (i − 1) 名的录取结果最优的情况下:第 (i) 名被其理论可能的最高志愿录取(特别地,如果第 (i) 名没有填写志愿表、或其所有志愿中的导师战队均已员,那么该选手出局)。

    如果一种方案满足 ‘‘前 (n) 名的录取结果最优’’,那么我们可以简称这种方案是最优的。

    举例而言,(2) 位导师 T 老师、F 老师的战队人数上限分别都是 (1) 人;(2) 位选手 Zayid、DuckD 分列第 (1)(2) 名。那么下面 (3) 种志愿表及其对应的最优录取结果如表中所示:

    选手 (1) 志愿 (2) 志愿 录取志愿 加入战队
    Zayid N/A T 老师、F 老师 2 F 老师
    DuckD T 老师 F 老师 1 T 老师
    选手 (1) 志愿 (2) 志愿 录取志愿 加入战队
    Zayid T 老师 F 老师 1 T 老师
    DuckD T 老师 F 老师 2 F 老师
    选手 (1) 志愿 (2) 志愿 录取志愿 加入战队
    Zayid F 老师 N/A 1 F 老师
    DuckD F 老师 N/A 出局 N/A

    可以证明,对于上面的志愿表,对应的方案都是唯一的最优录取结果。
    每个人都有一个自己的理想值 (s_i),表示第 (i) 位同学希望自己被第 (s_i) 或更高的志愿录
    取,如果没有,那么他就会非常沮丧。
    现在,所有选手的志愿表和排名都已公示。巧合的是,每位选手的排名都恰好与它
    们的编号相同。
    对于每一位选手,Zayid 都想知道下面两个问题的答案:

    • 在最优的录取方案中,他会被第几志愿录取。
    • 在其他选手相对排名不变的情况下,至少上升多少名才能使得他不沮丧。
      作为《中国新代码》的实力派代码手,Zayid 当然轻松地解决了这个问题。不过他
      还是想请你再算一遍,来检验自己计算的正确性。

    你可能注意到了根本没有概括因为太 tm 长了妈妈我不想概括

    Solution

    这份题面真难读。

    对于第一问,网络流;

    我们把学生和导师分别放到左右两列弄成一个二分图.

    源点连容量为 (1) 的学生边,然后让第一个学生连第一志愿,容量为 (1),如果能流量有增就下一个,否则删除这条边下一个;

    导师往汇点连人数限制的边。

    对于第二问,同样网络流。

    每个学生二分其最终排名,若学生 (x) 的最终排名为 (k),就用第一问的条件把 (x-k-1) 名学生的边连上看是否满流。

    #include<bits/stdc++.h>
    const int INF=1e9;
    std::queue<int> q;
    std::vector<int> a[210][210];
    int n,m,head[90010],nxt[180010],to[180010],cap[180010],Cur[900010],dep[900010],src,snk,cntot=1,up[210],s[210],ans[210];
    void addEdge(int one,int ano,int val)
    {
    	to[++cntot]=ano;
    	cap[cntot]=val;
    	nxt[cntot]=head[one];
    	head[one]=cntot;
    	
    	to[++cntot]=one;
    	cap[cntot]=0;
    	nxt[cntot]=head[ano];
    	head[ano]=cntot;
    }
    bool MF_bfs()
    {
    	for(int i=1;i<=n+m+2;++i)
    	{
    		Cur[i]=head[i];
    		dep[i]=INF;
    	}
    	q.push(src);
    	dep[src]=1;
    	while(!q.empty())
    	{
    		int now=q.front();
    		q.pop();
    		for(int i=head[now];i;i=nxt[i])
    		{
    			int y=to[i];
    			if(cap[i] && dep[y]==INF)
    			{
    				dep[y]=dep[now]+1;
    				q.push(y);
    			}
    		}
    	}
    	return dep[snk]^INF;
    }
    int MF_dfs(int x,int in)
    {
    	if(x==snk)	return in;
    	else
    	{
    		int out=0;
    		for(int &i=Cur[x];i;i=nxt[i])
    		{
    			int y=to[i];
    			if(cap[i] && dep[y]==dep[x]+1)
    			{
    				int tmp=MF_dfs(y,std::min(in,cap[i]));
    				cap[i]-=tmp;
    				cap[i^1]+=tmp;
    				in-=tmp;
    				out+=tmp;
    				if(!in)	break;
    			}
    		}
    		if(!out)	dep[x]=INF;
    		return out;
    	}
    }
    int Dinic()
    {
    	int res=0;
    	while(MF_bfs())	res+=MF_dfs(src,INF);
    	return res;
    }
    bool check(int x,int all)
    {
    	cntot=1;
    	for(int i=1;i<=n+m+2;++i)	head[i]=0;
    	addEdge(src,x,1);
    	for(int i=1;i<=m;++i)	addEdge(n+i,snk,up[i]);
    	int low=0;
    	for(int i=1;i<all;++i)
    	{
    		addEdge(src,i,1);
    		if(ans[i])
    		{
    			for(int now:a[i][ans[i]])	addEdge(i,n+now,1);
    		}
    		else	++low;
    	}
    	for(int i=1;i<=s[x];++i)
    	{
    		for(int now:a[x][i])	addEdge(x,now+n,1);
    	}
    	return low+Dinic()==all;
    }
    int search(int l,int r)
    {
    	int res=r+1,ID=r+1;
    	while(l<=r)
    	{
    		int mid=(l+r)>>1;
    		if(check(ID,ID-mid))
    		{
    			res=mid;
    			r=mid-1;
    		}
    		else	l=mid+1;
    	}
    	return res;
    }
    void Go()
    {
    	scanf("%d %d",&n,&m);
    	for(int i=1;i<=m;++i)	scanf("%d",&up[i]);
    	for(int i=1;i<=n;++i)
    	{
    		for(int j=1,x;j<=m;++j)
    		{
    			scanf("%d",&x);
    			if(x)	a[i][x].emplace_back(j);
    		}
    	}
    	for(int i=1;i<=n;++i)	scanf("%d",&s[i]);
    	
    	src=n+m+1;
    	snk=n+m+2;
    	for(int i=1;i<=m;++i)	addEdge(n+i,snk,up[i]);
    	for(int i=1;i<=n;++i)
    	{
    		addEdge(src,i,1);
    		for(int j=1;j<=m;++j)
    		{
    			if(!a[i][j].empty())
    			{
    				for(int now:a[i][j])	addEdge(i,now+n,1);
    				if(MF_bfs())
    				{
    					int waste=MF_dfs(src,INF);
    					ans[i]=j;
    					break;
    				}
    				else
    				{
    					int cur=cntot;
    					for(int k=1;k<=int(a[i][j].size());++k)
    					{
    						cap[cur]=cap[cur^1]=0;
    						cur-=2;
    					}
    				}
    			}
    		}
    	}
    	
    	for(int i=1;i<=n;++i)
    	{
    		if(ans[i])	printf("%d ",ans[i]);
    		else	printf("%d ",m+1);
    	}
    	printf("
    ");
    	
    	for(int i=1;i<=n;++i)
    	{
    		if(ans[i] && ans[i]<=s[i])	printf("0 ");
    		else	printf("%d ",search(1,i-1));
    	}
    	printf("
    ");
    	
    	for(int i=1;i<=n+m+2;++i)	head[i]=0;
    	for(int i=1;i<=n;++i)	ans[i]=0;
    	for(int i=1;i<=n;++i)
    	{
    		for(int j=1;j<=m;++j)	a[i][j].clear();
    	}
    	cntot=1;
    }
    int main()
    {
    	int T,waste;
    	scanf("%d %d",&T,&waste);
    	while(T-->0)	Go();
    	return 0;
    }
    
  • 相关阅读:
    wpf 文字动态动画效果
    c# 使用 Tchart控件之数据绑定
    Linq to sql学习之查询句法
    非常有用的查询所有SqlServer数据库字典的操作
    利用WPF建立自适应窗口大小布局的WinForm窗口
    SqlMethods
    wpf 炫彩动画效果简单实例
    SetBkMode与SetBkColor理解
    Windows的字体LOGFONT
    GetWindowRect和GetWindDC GetClientRect和GetDC 在标题栏输入文字
  • 原文地址:https://www.cnblogs.com/orchid-any/p/14635863.html
Copyright © 2020-2023  润新知