• 第三章 贝叶斯决策和学习


    预习笔记

    MAP分类器

    • 基于后验概率的分类器,后验概率 (p(C_{i}|x)=frac{p(x|C_{i})p(C_{i})}{p(x)})
    • 判别方法:(p(x|C_{1})p(C_{1})>p(x|C_{2})p(C_{2})?C1类:C2类)
    • 选择后验概率最大的类作为判别结果,即最小化概率误差

    贝叶斯分类器

    • 由于某些场景中,决策失误付出的实际代价不一样
    • 因此在MAP分类器的基础上,引入决策风险的概念,即对每种决策失误赋予对应的权值
    • 决策动作(α_i)的决策风险(R(α_{i}|x)=Σ_{j}λ_{ij}p(C_{j}|x)),其中(λ_{ij})表示将真值类别属于j类的样本归于i类的决策的损失
    • 对每个样本均归类于其决策风险最小的类别,可使损失期望之和最小化
    • 判别方法:(R(α_{i}|x)<R(α_{j}|x)?C_i类:C_j类)

    最大似然估计

    • (θ_{ML}) 使似然函数 (prod_{n=1}^{N}p(x_{n}|θ)) 最大
    • 一般可采用求导数为0点的方法,得到使似然函数取得最大值的(θ_{ML})
    • 参数θ被看作确定值,取值为 (θ_{ML})

    贝叶斯估计

    • 相对于最大似然估计中参数θ是一个确定值,贝叶斯估计将θ也看作随机变量来估计
    • 因此需要求参数θ的后验概率(p(θ|D_{i})=frac{p(D_{i}|θ)p(θ)}{p(D_{i})}=αprod_{n=1}^{N_{i}}p(x_{n}|θ)p(θ))(在认为特征间满足独立同分布(iid)时有后一个等式,其中α为归一化因子)
    • 再求观测似然关于θ的边缘概率:(p(x|D_{i}))=(int_{θ} p(x|θ,D_{i}))=(int_{θ} p(x|θ)p(θ|D_{i}))
    • 随着样本个数的增加,贝叶斯估计越趋于真实的观测似然分布

    KNN估计

    • 不知道概率分布形式的情况下,估计模式x的概率密度,即以x为中心,在极小区域R内的概率密度函数p(x)
    • 设P是任意模式落入R的概率,则有k个样本落入R的概率(p(k)=C_{N}^{k}P^{k}(1-P)^{N-k})
    • 由E(k)=NP,N非常大时,有k≈NP,故P≈(frac{k}{N})
    • 设R的区域体积为V,则P≈p(x)V,故(p(x)≈frac{P}{V}=frac{k}{NV})

    KNN分类器

    • 同样基于MAP分类器,但假设观测似然概率基于KNN估计
    • 由KNN估计,(p(x|C_i)=frac{k_i}{N_iV},p(x)=frac{k}{NV})
    • (p(C_i)=frac{N_i}{N})
    • (p(C_i|x)=frac{p(x|C_i)p(C_i)}{p(x)}=frac{k_i}{k})
    • 因此,对于测试样本x,我们找到与其距离最近的k个样本,其中哪个类别的样本最多,就将x归于那一类。即选择最大的(k_i),使得后验概率最大。

    直方图估计

    • 直方图也是基于无参数概率密度估计的基本原理: (p(x)=frac{k}{NV})
    • 将特征空间平均划分为m个格子,每个格子即一个区域R,因此区域R的位置、大小固定。
    • 每个格子的统计值为(frac{k_m}{N}) ,其中 N为训练样本个数,(k_m)为落在该格子的训练样本数
    • 对于任意模式x,概率密度为统计值/带宽,(p(x)=frac{k_m}{Nh})

    核密度估计

    • 核密度估计也是基于无参数概率密度估计的基本原理: (p(x)=frac{k}{NV})
    • 以任意待估计模式x为中心、固定带宽h,以此确定一个区域R
    • 概率密度 (p(x)=frac{Σ_{n=1}^{N}K(x|x_n,h)}{Nh})

    复习笔记

    贝叶斯决策和MAP分类器

    后验概率

    MAP分类器

    将测试样本决策分类给后验概率最大的那个类

    判别公式

    决策边界

    决策误差

    决策风险和贝叶斯分类器

    • 决策失误的代价往往不同,因此对每种决策失误给予损失权值,引入决策风险的概念
    • 假设该测试样本x的真值是属于(C_j)类,决策动作(a_i)对应的损失可以表达为: (λ(a_i|C_j)), 简写为(λ_{ij})

    决策风险

    决策目标:最小化期望损失

    最大似然估计

    目标

    若观测似然概率服从高斯分布

    贝叶斯估计

    给定参数θ分布的先验概率以及训练样本,估计参数θ分布的后验概率

    假设样本满足iid条件时

    KNN估计

    P为落入区域R的概率,k为落入区域R的样本个数

    可得p(x)的近似估计,其中V为区域体积

    优缺点

    直方图与核密度估计

    直方图估计

    区域R的位置大小固定

    每个格子的统计值为(frac{k_m}{N}) ,其中 N为训练样本个数,(k_m)为落在该格子的训练样本数

    对于任意模式x,概率密度为统计值/带宽,(p(x)=frac{k_m}{Nh})

    优缺点

    核密度估计

    以任意待估计模式x为中心、固定带宽h,以此确定一个区域R

    窗口函数

    核函数

    落入区域的个数k

    可得概率密度p(x)

    优缺点

  • 相关阅读:
    POST数据中有特殊符号导致数据丢失的解决方法
    Javascript中bind()方法的使用与实现
    Vue插件写、用详解(附demo)
    js自定义事件、DOM/伪DOM自定义事件
    对象可枚举和不可枚举属性
    js 数组 map方法
    Java源码学习(JDK 11)——java.util.concurrent.CopyOnWriteArrayList
    Java源码学习(JDK 11)——java.util.Collections
    Java源码学习(JDK 11)——java.util.Arrays
    Java源码学习(JDK 11)——java.lang.Collection
  • 原文地址:https://www.cnblogs.com/orangee/p/12831479.html
Copyright © 2020-2023  润新知