• 110. Balanced Binary Tree


    原题链接:https://leetcode.com/problems/balanced-binary-tree/description/
    判断一棵树是否是二叉树,本身不难,但是想要写出高效简洁的代码还是有点难度的:

    /**
     * Created by clearbug on 2018/2/26.
     */
    public class Solution {
    
        static class TreeNode {
            int val;
            TreeNode left;
            TreeNode right;
    
            public TreeNode(int val) {
                this.val = val;
            }
        }
    
        public static void main(String[] args) {
            Solution s = new Solution();
    
            // test1
            TreeNode root = new TreeNode(3);
            root.left = new TreeNode(9);
            root.right = new TreeNode(20);
            root.right.left = new TreeNode(15);
            root.right.right = new TreeNode(7);
            System.out.println(s.height(root));
            System.out.println(s.isBalanced(root));
            System.out.println(s.height2(root));
            System.out.println(s.isBalanced2(root));
    
            // test2
            TreeNode root2 = new TreeNode(1);
            root2.left = new TreeNode(2);
            root2.right = new TreeNode(2);
            root2.left.left = new TreeNode(3);
            root2.left.right = new TreeNode(3);
            root2.left.left.left = new TreeNode(4);
            root2.left.left.right = new TreeNode(4);
            System.out.println(s.height(root2));
            System.out.println(s.isBalanced(root2));
            System.out.println(s.height2(root2));
            System.out.println(s.isBalanced2(root2));
    
            // test3
            TreeNode root3 = new TreeNode(1);
            root3.left = new TreeNode(2);
            root3.right = new TreeNode(2);
            root3.left.left = new TreeNode(3);
            root3.right.right = new TreeNode(3);
            root3.left.left.left = new TreeNode(4);
            root3.right.right.right = new TreeNode(4);
            System.out.println(s.height(root3));
            System.out.println(s.isBalanced(root3));
            System.out.println(s.height2(root3));
            System.out.println(s.isBalanced2(root3));
        }
    
        /**
         * 方法一:最普通的方法,就是对比左右子树的高度看是否符合平衡二叉树
         *
         * @param root
         * @return
         */
        public boolean isBalanced(TreeNode root) {
            if (root == null) {
                return true;
            }
            int leftHeight = height(root.left);
            int rightHeight = height(root.right);
            return Math.abs(leftHeight - rightHeight) < 2 && isBalanced(root.left) && isBalanced(root.right);
        }
    
        private int height(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int leftHeight = height(root.left);
            int rightHeight = height(root.right);
    
            return Math.max(leftHeight, rightHeight) + 1;
        }
    
        /**
         * 方法二:在方法一的基础上进行优化,从底部向上依次遍历是否符合平衡二叉树
         *
         * @param root
         * @return
         */
        public boolean isBalanced2(TreeNode root) {
            return height2(root) != -1;
        }
    
        private int height2(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int leftHeight = height2(root.left);
            if (leftHeight == -1) {
                return -1;
            }
            int rightHeight = height2(root.right);
            if (rightHeight == -1) {
                return -1;
            }
            if (Math.abs(leftHeight - rightHeight) > 1) {
                return -1;
            }
            return Math.max(leftHeight, rightHeight) + 1;
        }
    
    }
    
  • 相关阅读:
    sed 简明教程
    简明 Vim 练级攻略
    AWK 简明教程
    TCP 的那些事儿(下)
    TCP 的那些事儿(上)
    CentOS 7系统安装配置图解教程
    Google Chrome谷歌/火狐/Safari浏览器开发者工具基本使用教程
    《Ext JS模板与组件基本框架图----组件》
    ExtJS关于组件Component生命周期
    《Ext JS模板与组件基本知识框架图----模板》
  • 原文地址:https://www.cnblogs.com/optor/p/8584297.html
Copyright © 2020-2023  润新知