实际场景中,经常要从多个选项中随机选择一个,不过,不同选项经常有不同的权重。
/** * Created by xc on 2019/11/23 * 带权重的随机选择 */ public class Test { public static void main(String[] args) { Pair[] options = new Pair[]{new Pair("first", 3.3), new Pair("second", 3.3), new Pair("third", 3.3)}; WeightRandom rnd = new WeightRandom(options); for (int i = 0; i < 10; i++) { System.out.print(rnd.nextItem() + " "); } } }
/** * Created by xc on 2019/11/25 * 表示选项和权重的类Pair */ public class Pair { Object item; double weight; public Pair(Object item, double weight) { this.item = item; this.weight = weight; } public Object getItem() { return item; } public double getWeight() { return weight; } }
/** * Created by xc on 2019/11/25 * 代码清单7-9 带权重的选择WeightRandom */ public class WeightRandom { private Pair[] options; private double[] cumulativeProbabilities; private Random rnd; public WeightRandom(Pair[] options) { this.options = options; this.rnd = new Random(); prepare(); } /** * prepare()方法计算每个选项的累计概率,保存在数组cumulativeProbabilities中 */ private void prepare() { int weights = 0; for (Pair pair : options) { weights += pair.getWeight(); } cumulativeProbabilities = new double[options.length]; int sum = 0; for (int i = 0; i < options.length; i++) { sum += options[i].getWeight(); cumulativeProbabilities[i] = sum / (double) weights; } } /** * nextItem()方法根据权重随机选择一个,具体就是,首先生成一个0~1的数, * 然后使用二分查找,如果没找到,返回结果是-(插入点)-1,所以-index-1就是插入点,插入点的位置就对应选项的索引。 * @return */ public Object nextItem() { double randomValue = rnd.nextDouble(); int index = Arrays.binarySearch(cumulativeProbabilities, randomValue); if (index < 0) { index = -index - 1; } return options[index].getItem(); } }