• BZOJ 3295 动态逆序对


    树状数组套平衡树

    最直接的解法应该是O(nlogn)的带修主席树,但是还是可以树状数组套平衡树乱搞的。。多了一个log。。

    因为leaf tree常数比较小,所以就随意任性了~

    删除一个数的时候,减去左边比这个数大数和右边比这个数小的数即可

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    #define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    #define newNode(a, b, c, d) (&(*pool[cnt++] = Node(a, b, c, d)))
    #define merge(a, b) newNode(a->size + b->size, b->val, a, b)
    #define push_up(rt) if(rt->lf->size) rt->size = rt->lf->size + rt->rf->size, rt->val = rt->rf->val
    #define ratio 4
    const int N = 5000000;
    int n, m, cnt, pos[100005], tree[100005], val[100005];
    struct Node{
        int size, val;
        Node *lf, *rf;
        Node(){}
        Node(int size, int val, Node *lf, Node *rf): size(size), val(val), lf(lf), rf(rf){}
    }*null, *root[100005], *pool[N], t[N];
    
    inline void maintain(Node *cur){
        if(cur->lf->size > cur->rf->size * ratio)
            cur->rf = merge(cur->lf->rf, cur->rf), pool[--cnt] = cur->lf, cur->lf = cur->lf->lf;
        if(cur->rf->size > cur->lf->size * ratio)
            cur->lf = merge(cur->lf, cur->rf->lf), pool[--cnt] = cur->rf, cur->rf = cur->rf->rf;
    }
    
    void insert(Node *cur, int val){
        if(cur->size == 1){
            cur->lf = newNode(1, min(val, cur->val), null, null);
            cur->rf = newNode(1, max(val, cur->val), null, null);
        }
        else insert(val > cur->lf->val ? cur->rf : cur->lf, val);
        push_up(cur), maintain(cur);
    }
    
    void erase(Node *cur, int val){
        if(cur->lf->size == 1 && cur->lf->val == val)
            pool[--cnt] = cur->lf, pool[--cnt] = cur->rf, *cur = *cur->rf;
        else if(cur->rf->size == 1 && cur->rf->val == val)
            pool[--cnt] = cur->rf, pool[--cnt] = cur->lf, *cur = *cur->lf;
        else erase(val > cur->lf->val ? cur->rf : cur->lf, val);
        push_up(cur), maintain(cur);
    }
    
    int find(Node *cur, int val){
        if(cur->size == 1) return 1;
        return val > cur->lf->val ? cur->lf->size + find(cur->rf, val) : find(cur->lf, val);
    }
    
    inline void add(int t, int val){
        for(; t <= n; t += lowbit(t))
            insert(root[t], val);
    }
    
    inline void sub(int t, int val){
        for(; t <= n; t += lowbit(t))
            erase(root[t], val);
    }
    
    inline int queryL(int t, int val){
        int ret = 0;
        for(; t; t -= lowbit(t))
            ret += root[t]->size - 1 - (find(root[t], val) - 1);
        return ret;
    }
    
    inline int queryR(int t, int val){
        int ret = 0;
        for(; t; t -= lowbit(t))
            ret += find(root[t], val) - 1;
        return ret;
    }
    
    inline void add(int t){
        for(; t <= n; t += lowbit(t))
            tree[t] += 1;
    }
    
    inline int record(int t){
        int ret = 0;
        for(; t; t -= lowbit(t))
            ret += tree[t];
        return ret;
    }
    
    int main(){
    
        for(int i = 0; i < N; i ++) pool[i] = &t[i];
        null = new Node(0, 0, nullptr, nullptr);
        n = read(), m = read();
        for(int i = 1; i <= n; i ++) root[i] = new Node(1, INF, null, null);
        for(int i = 1; i <= n; i ++){
            val[i] = read();
            add(i, val[i]), pos[val[i]] = i;
        }
        ll res = 0;
        for(int i = 1; i <= n; i ++){
            add(val[i]);
            res += i - record(val[i]);
        }
        while(m --){
            printf("%lld
    ", res);
            int x = read(); ll ans = 0;
            ll tmp = queryL(pos[x] - 1, x);
            ans += tmp;
            ll a = queryR(n, x), b = queryR(pos[x], x);
            ans += a - b;
            res -= ans;
            sub(pos[x], x);
        }
        return 0;
    }
    
  • 相关阅读:
    FastJson--阿里巴巴公司开源的速度最快的Json和对象转换工具
    如何去设计一个自适应的网页设计或HTMl5
    教育行业SaaS选型 需要注意的三点问题
    SaaS系列介绍之十五: SaaS知识重用
    SaaS系列介绍之十四: SaaS软件开发分析
    SaaS系列介绍之十三: SaaS系统体系架构
    SaaS系列介绍之十二: SaaS产品的研发模式
    个人总结
    用例图设计
    第二次结对作业
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/11023236.html
Copyright © 2020-2023  润新知