• Leafy Tree


    Leafy Tree

    这是一个特别优秀的平衡树,常数非常小,支持可持久化,可以维护区间,所以去学了。。

    他的由叶子节点和辅助节点组成,每个非叶子节点一定有两个孩子,自己则统计了两个孩子所在子树的信息。

    每个叶子节点储存了真正的信息。。和线段树很像,所有又有人叫他平衡线段树。。

    贴一个加权平衡,也就是WBLT的板子

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    #define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    #define newNode(a, b, c, d) (&(*pool[cnt++] = Node(a, b, c, d)))
    #define merge(a, b) newNode(a->size + b->size, b->val, a, b)
    #define push_up(rt) if(rt->lf->size) rt->size = rt->lf->size + rt->rf->size, rt->val = rt->rf->val
    #define ratio 4
    const int N = 100005;
    int n, cnt;
    struct Node{
        int size, val;
        Node *lf, *rf;
        Node(){}
        Node(int size, int val, Node *lf, Node *rf): size(size), val(val), lf(lf), rf(rf){}
    }*null, *pool[N<<1], t[N<<1], *root;
    
    inline void maintain(Node *cur){
        if(cur->lf->size > cur->rf->size * ratio)
            cur->rf = merge(cur->lf->rf, cur->rf), pool[--cnt] = cur->lf, cur->lf = cur->lf->lf;
        if(cur->rf->size > cur->lf->size * ratio)
            cur->lf = merge(cur->lf, cur->rf->lf), pool[--cnt] = cur->rf, cur->rf = cur->rf->rf;
    }
    
    void insert(Node *cur, int val){
        if(cur->size == 1){
            cur->lf = newNode(1, min(val, cur->val), null, null);
            cur->rf = newNode(1, max(val, cur->val), null, null);
        }
        else insert(val > cur->lf->val ? cur->rf : cur->lf, val);
        push_up(cur), maintain(cur);
    }
    
    void erase(Node *cur, int val){
        if(cur->lf->size == 1 && cur->lf->val == val)
            pool[--cnt] = cur->lf, pool[--cnt] = cur->rf, *cur = *cur->rf;
        else if(cur->rf->size == 1 && cur->rf->val == val)
            pool[--cnt] = cur->rf, pool[--cnt] = cur->lf, *cur = *cur->lf;
        else erase(val > cur->lf->val ? cur->rf : cur->lf, val);
        push_up(cur), maintain(cur);
    }
    
    int find(Node *cur, int k){
        if(cur->size == 1) return cur->val;
        return k > cur->lf->size ? find(cur->rf, k - cur->lf->size) : find(cur->lf, k);
    }
    
    int ranks(Node *cur, int val){
        if(cur->size == 1) return 1;
        return val > cur->lf->val ? cur->lf->size + ranks(cur->rf, val) : ranks(cur->lf, val);
    }
    
    int precursor(int val){
        return find(root, ranks(root, val) - 1);
    }
    
    int successor(int val){
        return find(root, ranks(root, val + 1));
    }
    
    int main(){
    
        n = read();
        null = new Node(0, 0, nullptr, nullptr);
        root = new Node(1, INF, null, null);
        for(int i = 0; i < (N << 1); i ++) pool[i] = &t[i];
        while(n --){
            int opt = read(), x = read();
            if(opt == 1) insert(root, x);
            else if(opt == 2) erase(root, x);
            else if(opt == 3) printf("%d
    ", ranks(root, x));
            else if(opt == 4) printf("%d
    ", find(root, x));
            else if(opt == 5) printf("%d
    ", precursor(x));
            else printf("%d
    ", successor(x));
        }
        return 0;
    }
    

    前面说了leafytree是支持可持久化的,而且也很方便。

    每次改动节点的时候开新节点连上就好了,注意要单独维护平衡,每次改动都维护一下,同样也是建新的节点,这里要把左右子树全部重开节点,因为原来的树毕竟会有一部分挂在需要的历史版本上。。

    具体看代码的maintain函数吧。

    #include <bits/stdc++.h>
    #define INF 2147483647
    #define full(a, b) memset(a, b, sizeof a)
    #define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    #define newNode(a, b, c, d) (&(t[cnt++] = Node(a, b, c, d)))
    #define merge(a, b) newNode(a->size + b->size, b->val, a, b)
    #define push_up(rt) if(rt->lf->size) rt->size = rt->lf->size + rt->rf->size, rt->val = rt->rf->val;
    #define ratio 4
    const int N = 5000005;
    struct Node{
        int size, val;
        Node *lf, *rf;
        Node(){}
        Node(int size, int val, Node *lf, Node *rf): size(size), val(val), lf(lf), rf(rf){}
    }*null, *root[N], t[N<<2];
    int n, cnt;
    
    Node *maintain(Node *cur){
        Node *node = newNode(cur->size, cur->val, cur->lf, cur->rf);
        if(node->lf->size > node->rf->size * ratio)
            node->lf = maintain(node->lf), node->rf = maintain(node->rf), node->rf = merge(node->lf->rf, node->rf), node->lf = node->lf->lf;
        if(node->rf->size > node->lf->size * ratio)
            node->lf = maintain(node->lf), node->rf = maintain(node->rf), node->lf = merge(node->lf, node->rf->lf), node->rf = node->rf->rf;
        return node;
    }
    
    Node *insert(Node *cur, int val){
        Node *node = newNode(cur->size, cur->val, cur->lf, cur->rf);
        if(node->size == 1){
            node->lf = newNode(1, min(val, cur->val), null, null);
            node->rf = newNode(1, max(val, cur->val), null, null);
        }
        else if(val > node->lf->val){
            node->rf = insert(node->rf, val);
        }
        else{
            node->lf = insert(node->lf, val);
        }
        push_up(node);
        return node;
    }
    
    Node *erase(Node *cur, int val){
        Node *node = newNode(cur->size, cur->val, cur->lf, cur->rf);
        if(node->size == 1 && node->val != val) return node;
        if(node->lf->size == 1 && node->lf->val == val) *node = *node->rf;
        else if(node->rf->size == 1 && node->rf->val == val) *node = *node->lf;
        else if(val > node->lf->val) node->rf = erase(node->rf, val);
        else node->lf = erase(node->lf, val);
        push_up(node);
        return node;
    }
    
    int find(Node *cur, int val){
        if(cur->size == 1) return 1;
        return val > cur->lf->val ? cur->lf->size + find(cur->rf, val) : find(cur->lf, val);
    }
    
    int select(Node *cur, int k){
        if(cur->size == 1) return cur->val;
        return k > cur->lf->size ? select(cur->rf, k - cur->lf->size) : select(cur->lf, k);
    }
    
    int main(){
    
        n = read();
        null = new Node(0, 0, nullptr, nullptr);
        root[0] = new Node(1, INF, null, null);
        for(int i = 1; i <= n; i ++){
            int v = read(), opt = read(), x = read();
            if(opt == 1){
                root[i] = maintain(insert(root[v], x));
            }
            else if(opt == 2){
                root[i] = maintain(erase(root[v], x));
            }
            else if(opt == 3){
                printf("%d
    ", find(root[v], x));
                root[i] = root[v];
            }
            else if(opt == 4){
                printf("%d
    ", select(root[v], x));
                root[i] = root[v];
            }
            else if(opt == 5){
                int rk = find(root[v], x);
                if(rk == 1) printf("-2147483647
    ");
                else printf("%d
    ", select(root[v], rk - 1));
                root[i] = root[v];
            }
            else{
                printf("%d
    ", select(root[v], find(root[v], x + 1)));
                root[i] = root[v];
            }
        }
        return 0;
    }
    
  • 相关阅读:
    Matrix Power Series
    The Noisy Party(BUPT)
    cony
    又见Fibonacci数列
    回文字符串
    街区最短路径问题
    点的变换
    可恶的麦兜(北邮)
    Travel
    Swing实现Java代码编辑器实现关键词高亮显示
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10979867.html
Copyright © 2020-2023  润新知