LCT + 树上倍增
和bzoj的弹飞绵羊差不多,多了一个倍增记录父亲节点。
这里有个小技巧,把飞出去的点当成第1个比较好操作。。不像弹飞绵羊是第n+1个,因为这里是往上跳,所以出去了的话我们的父亲节点就是0,直接把节点+1当初LCT中的点就好了
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int _, n, m, t, tot, ch[N][2], size[N], rev[N], fa[N], p[N][21], st[N], to[N];
void build(){
++ tot;
size[tot] = 1, fa[tot] = ch[tot][0] = ch[tot][1] = rev[tot] = 0;
}
bool isRoot(int x){
return ch[fa[x]][0] != x && ch[fa[x]][1] != x;
}
void push_up(int x){
size[x] = size[ch[x][0]] + size[ch[x][1]] + 1;
}
void reverse(int x){
rev[x] ^= 1;
swap(ch[x][0], ch[x][1]);
}
void push_down(int x){
if(rev[x]){
if(ch[x][0]) reverse(ch[x][0]);
if(ch[x][1]) reverse(ch[x][1]);
rev[x] ^= 1;
}
}
void rotate(int x){
int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1;
ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y;
if(!isRoot(y)) ch[z][ch[z][1] == y] = x;
fa[x] = z, fa[y] = x, ch[x][p] = y;
push_up(y), push_up(x);
}
void splay(int x){
int pos = 0; st[++ pos] = x;
for(int i = x; !isRoot(i); i = fa[i]) st[++ pos] = fa[i];
while(pos) push_down(st[pos --]);
while(!isRoot(x)){
int y = fa[x], z = fa[y];
if(!isRoot(y)){
(ch[y][0] == x) ^ (ch[z][0] == y) ? rotate(x) : rotate(y);
}
rotate(x);
}
push_up(x);
}
void access(int x){
for(int p = 0; x; p = x, x = fa[x])
splay(x), ch[x][1] = p, push_up(x);
}
void makeRoot(int x){
access(x), splay(x), reverse(x);
}
void split(int x, int y){
makeRoot(x), access(y), splay(y);
}
void link(int x, int y){
makeRoot(x);
fa[x] = y;
}
void cut(int x, int y){
split(x, y);
fa[x] = ch[y][0] = 0;
push_up(y);
}
int find(int x, int k){
int u = x;
for(int i = 0; k; k >>= 1, i ++)
if(k & 1) u = p[u][i];
return u;
}
int main(){
for(_ = read(); _; _ --){
tot = 0, full(to, 0);
n = read();
t = (int)(log(n) / log(2)) + 1;
for(int i = 2; i <= n; i ++){
p[i][0] = read();
}
for(int i = 1; i <= t; i ++){
for(int j = 1; j <= n; j ++){
p[j][i] = p[p[j][i - 1]][i - 1];
}
}
for(int i = 1; i <= n + 1; i ++) build();
for(int i = 1; i <= n; i ++){
to[i] = find(i, read());
link(i + 1, to[i] + 1);
}
m = read();
while(m --){
int opt = read();
if(opt == 1){
int u = read();
split(1, u + 1);
printf("%d
", size[u + 1] - 1);
}
else{
int u = read(), k = read();
cut(u + 1, to[u] + 1);
to[u] = find(u, k);
link(u + 1, to[u] + 1);
}
}
}
return 0;
}