• 2018 Multi-University Training Contest 2


    线段树

    a数组一开始全是0,每次增加1,我们可以发现不一定每一个a[i]/b[i]都是会影响答案的。

    也就是说,只有a[i]>b[i]才会影响答案,为了方便比较,我们可以把a的初始值变成b,然后每次区间加1相当于区间减1,当有某个数减为0,就代表影响了一次答案,我们可以暴力找到这个数,将他重置为b的初始值,然后更新答案。

    对于没有影响答案的区间,只需要打标记,区间减1则让最小值减1即可。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    #define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 100005;
    int n, q, a[N], tree[N<<2], minimum[N<<2], lazy[N<<2];
    
    void init(){
        full(a, 0), full(tree, 0);
        full(minimum, 0), full(lazy, 0);
    }
    
    void push_up(int rt){
        minimum[rt] = min(minimum[rt << 1], minimum[rt << 1 | 1]);
        tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
    };
    
    void push_down(int rt){
        int l = rt << 1, r = rt << 1 | 1;
        minimum[l] -= lazy[rt], minimum[r] -= lazy[rt];
        lazy[l] += lazy[rt], lazy[r] += lazy[rt];
        lazy[rt] = 0;
    }
    
    void buildTree(int rt, int l, int r){
        if(l == r){
            tree[rt] = 0, minimum[rt] = a[l], lazy[rt] = 0;
            return;
        }
        int mid = (l + r) >> 1;
        buildTree(rt << 1, l, mid);
        buildTree(rt << 1 | 1, mid + 1, r);
        push_up(rt);
    }
    
    void calc(int rt, int l, int r){
        if(l == r){
            tree[rt] ++, lazy[rt] = 0, minimum[rt] = a[l];
            return;
        }
        push_down(rt);
        int mid = (l + r) >> 1;
        if(!minimum[rt << 1]) calc(rt << 1, l, mid);
        if(!minimum[rt << 1 | 1]) calc(rt << 1 | 1, mid + 1, r);
        push_up(rt);
    }
    
    void modify(int rt, int l, int r, int ml, int mr){
        if(l == ml && r == mr){
            lazy[rt] ++, minimum[rt] --;
            if(!minimum[rt]) calc(rt, l, r);
            return;
        }
        push_down(rt);
        int mid = (l + r) >> 1;
        if(mr <= mid) modify(rt << 1, l, mid, ml, mr);
        else if(ml > mid) modify(rt << 1 | 1, mid + 1, r, ml, mr);
        else{
            modify(rt << 1, l, mid, ml, mid);
            modify(rt << 1 | 1, mid + 1, r, mid + 1, mr);
        }
        push_up(rt);
    }
    
    int query(int rt, int l, int r, int ql, int qr){
        if(l == ql && r == qr){
            return tree[rt];
        }
        push_down(rt);
        int mid = (l + r) >> 1;
        if(qr <= mid) return query(rt << 1, l, mid, ql, qr);
        else if(ql > mid) return query(rt << 1 | 1, mid + 1, r, ql, qr);
        return query(rt << 1, l, mid, ql, mid) + query(rt << 1 | 1, mid + 1, r, mid + 1, qr);
    }
    
    int main(){
    
        FAST_IO;
        while(cin >> n >> q){
            init();
            for(int i = 1; i <= n; i ++) cin >> a[i];
            buildTree(1, 1, n);
            while(q --){
                string opt; cin >> opt;
                int l, r; cin >> l >> r;
                if(opt[0] == 'a') modify(1, 1, n, l, r);
                else cout << query(1, 1, n, l, r) << endl;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    SHELL
    Docker
    RHCE内容记要
    mysql基本知识的总结
    Linux启动提示Kernel panic
    配置tomcat、nginx实现反向代理(需操作)
    linux下nginx的安装和配置
    linux下安装mysql5.7(centos6.0)
    linux打包解压包(.tar .gz .tar.gz .zip)
    多重继承下的类型转换
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10901671.html
Copyright © 2020-2023  润新知