分块训练
参考hzwer的做法,每个数在经过数次向下取整的开方后都会变成0或1。
我们在维护块内信息的时候,可以将整块全是0或1的块跳过,减少复杂度。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 50005;
ll a[N], sum[N];
int n, t, lt[N], rt[N], pos[N];
bool vis[N];
void reset(int k){
if(vis[k]) return;
vis[k] = true, sum[k] = 0;
for(int i = lt[k]; i <= rt[k]; i ++){
a[i] =(int)sqrt(a[i]);
sum[k] += a[i];
if(a[i] > 1) vis[k] = false;
}
}
void modify(int l, int r){
int p = pos[l], q = pos[r];
if(p == q){
for(int i = l; i <= r; i ++){
sum[p] -= a[i], a[i] = (int)sqrt(a[i]), sum[p] += a[i];
}
}
else{
for(int i = p + 1; i <= q - 1; i ++)
reset(i);
for(int i = l; i <= rt[p]; i ++){
sum[p] -= a[i], a[i] = (int)sqrt(a[i]), sum[p] += a[i];
}
for(int i = lt[q]; i <= r; i ++){
sum[q] -= a[i], a[i] = (int)sqrt(a[i]), sum[q] += a[i];
}
}
}
ll query(int l, int r){
int p = pos[l], q = pos[r];
ll ret = 0;
if(p == q){
for(int i = l; i <= r; i ++){
ret += a[i];
}
}
else{
for(int i = p + 1; i <= q - 1; i ++) ret += sum[i];
for(int i = l; i <= rt[p]; i ++) ret += a[i];
for(int i = lt[q]; i <= r; i ++) ret += a[i];
}
return ret;
}
int main(){
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cin >> n;
for(int i = 1; i <= n; i ++) cin >> a[i];
t = (int)sqrt(n);
for(int i = 1; i <= t; i ++){
lt[i] = (i - 1) * t + 1;
rt[i] = i * t;
}
if(rt[t] < n) t ++, lt[t] = rt[t - 1] + 1, rt[t] = n;
for(int i = 1; i <= t; i ++){
for(int j = lt[i]; j <= rt[i]; j ++){
pos[j] = i, sum[i] += a[j];
}
}
for(int i = 1; i <= n; i ++){
int opt, l, r; ll c;
cin >> opt >> l >> r >> c;
if(!opt) modify(l, r);
else cout << query(l, r) << endl;
}
return 0;
}