• 洛谷P4074 糖果公园


    树上带修莫队

    莫队的综合题。。处理起来真的麻烦。。

    把树压成一维,然后在括号序上莫队,要注意端点不是lca的情况,以及起点和终点必须是第一次dfs的序号。。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 300010;
    int n, m, q, cnt, t, dfn, head[N], v[N], w[N], f[N], g[N], id[N], p[N][20], depth[N];
    int pos[N], c[N], mt, qt, k, num[N];
    ll ans, res[N];
    bool vis[N];
    struct Edge { int v, next; } edge[N<<1];
    struct Modify { int p, pre, suc; } modify[N];
    struct Query{
        int l, r, t, id;
        bool operator < (const Query &rhs) const {
            if(pos[l] != pos[rhs.l]) return l < rhs.l;
            if(pos[r] != pos[rhs.r]) return r < rhs.r;
            return t < rhs.t;
        }
    }query[N];
    
    void addEdge(int a, int b){
        edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
    }
    
    void dfs(int s, int fa){
        f[s] = ++dfn, p[s][0] = fa, depth[s] = depth[fa] + 1;
        id[f[s]] = s;
        for(int i = 1; i <= t; i ++)
            p[s][i] = p[p[s][i - 1]][i - 1];
        for(int i = head[s]; i != -1; i = edge[i].next){
            int u = edge[i].v;
            if(u == fa) continue;
            dfs(u, s);
        }
        g[s] = ++dfn, id[g[s]] = s;
    }
    
    int lca(int x, int y){
        if(depth[x] < depth[y]) swap(x, y);
        for(int i = t; i >= 0; i --){
            if(depth[p[x][i]] >= depth[y]) x = p[x][i];
        }
        if(x == y) return y;
        for(int i = t; i >= 0; i --){
            if(p[x][i] == p[y][i]) continue;
            x = p[x][i], y = p[y][i];
        }
        return p[y][0];
    }
    
    void add(int k){
        if(vis[k]) ans -= 1LL * v[c[k]] * w[num[c[k]]--];
        else ans += 1LL * v[c[k]] * w[++num[c[k]]];
        vis[k] ^= 1;
    }
    
    void rev(int k, int p){
        if(vis[k]){
            add(k), c[k] = p, add(k);
        }
        else c[k] = p;
    }
    
    int main(){
    
        full(head, -1);
        n = read(), m = read(), q = read();
        t = (int)(log(n) / log(2)) + 1;
        for(int i = 1; i <= m; i ++) v[i] = read();
        for(int i = 1; i <= n; i ++) w[i] = read();
        for(int i = 1; i <= n - 1; i ++){
            int u = read(), v = read();
            addEdge(u, v), addEdge(v, u);
        }
        dfs(1, 0);
        k = (int)pow(dfn, 2.0 / 3);
        for(int i = 1; i <= n; i ++) c[i] = read();
        for(int i = 1; i <= q; i ++){
            int opt = read();
            if(opt == 0){
                ++ mt;
                modify[mt].p = read(), modify[mt].suc = read();
                modify[mt].pre = c[modify[mt].p];
                c[modify[mt].p] = modify[mt].suc;
            }
            else{
                ++ qt;
                int l = read(), r = read();
                if(f[l] > f[r]) swap(l, r);
                query[qt].l = lca(l, r) == l ? f[l] : g[l];
                query[qt].r = f[r];
                query[qt].id = qt, query[qt].t = mt;
                pos[query[qt].l] = (query[qt].l - 1) / k + 1;
                pos[query[qt].r] = (query[qt].r - 1) / k + 1;
            }
        }
        for(int i = mt; i >= 1; i --) c[modify[i].p] = modify[i].pre;
        sort(query + 1, query + qt + 1);
        int l = 1, r = 0, ti = 0;
        for(int i = 1; i <= qt; i ++){
            int curL = query[i].l, curR = query[i].r, curT = query[i].t;
            while(l < curL) add(id[l++]);
            while(r < curR) add(id[++r]);
            while(l > curL) add(id[--l]);
            while(r > curR) add(id[r--]);
            while(ti < curT) ti ++, rev(modify[ti].p, modify[ti].suc);
            while(ti > curT) rev(modify[ti].p, modify[ti].pre), ti --;
            int f = lca(id[l], id[r]);
            if(f != id[l] && f != id[r]){
                add(f), res[query[i].id] = ans, add(f);
            }
            else res[query[i].id] = ans;
        }
        for(int i = 1; i <= qt; i ++){
            printf("%lld
    ", res[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    自学数据分析书单2
    自学的数据分析书单
    @RequestBody, @ResponseBody 注解详解(转)
    @RequestParam @RequestBody @PathVariable 等参数绑定注解详解(转)
    @RequestMapping 用法详解之地址映射(转)
    关于java属性字段命名
    jQuery对象和DOM对象使用说明
    UAP开发错误之The given System.Uri cannot be converted into a Windows.Foundation.Uri(windows phone背景更换)
    Windows Azure之Mobile Service
    .NET重思(二)接口和抽象类的取舍
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10870699.html
Copyright © 2020-2023  润新知