拆点+网络流
拆点建图应该是很常见的套路了。。一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么。
所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t(这样方便,当然也可以把第一个点的出点当成s,第二个点的入点当成t,但其实我们把s和t的入点和出点之间的边容量设为INF之后就没有影响了)
每条原图的边连接着u的出点和v的入点,v的出点和u的入点,容量设为INF,保证不给割,其他点的入点和出点之间的容量当然是1。这样我们的割就一定会割在容量为1的边上,每割一条,就相当于去掉了一个点。暴力跑最大流早最小值就好了
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 1000;
int n, m, cnt, head[N<<2], x[N<<2], y[N<<2], s, t, depth[N<<2], ans;
struct Edge { int v, next, f; } edge[N<<5];
void addEdge(int a, int b, int f){
edge[cnt].v = b, edge[cnt].f = f, edge[cnt].next = head[a], head[a] = cnt ++;
edge[cnt].v = a, edge[cnt].f = 0, edge[cnt].next = head[b], head[b] = cnt ++;
}
bool bfs(){
full(depth, 0);
queue<int> q;
depth[s] = 1, q.push(s);
while(!q.empty()){
int cur = q.front(); q.pop();
//cout << cur << endl;
for(int i = head[cur]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(!depth[u] && edge[i].f > 0){
depth[u] = depth[cur] + 1;
q.push(u);
}
}
}
return depth[t] != 0;
}
int dfs(int cur, int a){
if(cur == t) return a;
int flow = 0;
for(int i = head[cur]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(depth[u] == depth[cur] + 1 && edge[i].f > 0){
int k = dfs(u, min(a, edge[i].f));
a -= k, flow += k, edge[i].f -= k, edge[i^1].f += k;
}
if(!a) break;
}
if(a) depth[cur] = -1;
return flow;
}
int dinic(){
int ret = 0;
while(bfs()) ret += dfs(s, INF);
return ret;
}
void solve(){
full(head, -1), cnt = 0;
for(int i = 0; i < n; i ++){
if(i == s || i == t) addEdge(i, i + n, INF);
else addEdge(i, i + n, 1);
}
for(int i = 0; i < m; i ++){
addEdge(x[i] + n, y[i], INF), addEdge(y[i] + n, x[i], INF);
}
ans = min(ans, dinic());
}
int main(){
while(scanf("%d%d", &n, &m) != EOF){
for(int i = 0; i < m; i ++){
int j; char str[100]; scanf("%s", str);
for(x[i] = 0, j = 1; str[j] != ','; j ++) x[i] = x[i] * 10 + (str[j] - '0');
for(y[i] = 0, j ++; str[j] != ')'; j ++) y[i] = y[i] * 10 + (str[j] - '0');
}
ans = INF;
for(int i = 0; i < n; i ++){
for(int j = i + 1; j < n; j ++){
s = i, t = j, solve();
}
}
if(n <= 1 || ans == INF) ans = n;
printf("%d
", ans);
}
return 0;
}