There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swapoperations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions a and b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swap operations applied to the sequence.
Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109, ai ≠ bi) — the arguments of the swap operation.
Print a single integer — the number of inversions in the resulting sequence.
2
4 2
1 4
4
3
1 6
3 4
2 5
15
题意:一个无限 长的数组(1, 2, 3, 4, .....), n次操作, 每次交换两个位置上的值.
输出最终 有多少逆序对数。
由于这题是 数字可能会很多,,我们只能 离散化之后来求 逆序数了,, 先把所有操作读进来,,离散化 被操作数。 而那些被操作数之间的数字可以缩点来处理(就是把所有的数字看成一个数字来处理)。然后就可以求出结果了。。
1 #include <set> 2 #include <map> 3 #include <cmath> 4 #include <ctime> 5 #include <queue> 6 #include <stack> 7 #include <cstdio> 8 #include <string> 9 #include <vector> 10 #include <cstdlib> 11 #include <cstring> 12 #include <iostream> 13 #include <algorithm> 14 using namespace std; 15 typedef unsigned long long ull; 16 typedef long long ll; 17 const int inf = 0x3f3f3f3f; 18 const double eps = 1e-8; 19 const int MAXN = 4e5+10; 20 int a[MAXN], tot, n; 21 int A[MAXN], B[MAXN]; 22 int lowbit (int x) 23 { 24 return x & -x; 25 } 26 long long arr[MAXN], M; 27 void modify (int x, int d) 28 { 29 while (x < M) 30 { 31 arr[x] += d; 32 x += lowbit (x); 33 } 34 } 35 int sum(int x) 36 { 37 int ans = 0; 38 while (x) 39 { 40 ans += arr[x]; 41 x -= lowbit (x); 42 } 43 return ans; 44 } 45 int p[MAXN],kk[MAXN]; 46 int main() 47 { 48 #ifndef ONLINE_JUDGE 49 freopen("in.txt","r",stdin); 50 #endif 51 while (cin >> n) 52 { 53 int x, y; 54 tot = 0; 55 memset (arr, 0, sizeof (arr)); 56 memset(kk, 0, sizeof (kk)); 57 long long minv = inf; 58 long long maxv = 0; 59 map<int, int>pp; 60 for (int i = 0; i < n; i++) 61 { 62 scanf ("%d%d", &x, &y); 63 minv = min(minv, (long long)min(x, y)); 64 maxv = max(maxv, (long long)max(x, y)); 65 a[tot++] = x; 66 a[tot++] = y; 67 A[i] = x; 68 B[i] = y; 69 } 70 sort (a, a+tot); 71 72 tot = unique(a, a+tot) - a; 73 int ok = 0; 74 int tmp = tot; 75 long long j = minv; 76 int tt; 77 vector<int>vec; 78 for (int i = 0; i < tot; ) 79 { 80 if (a[i] == j) 81 { 82 i++; 83 j++; 84 ok = 0; 85 } 86 else 87 { 88 if (ok == 0) // 缩点 89 { 90 ok = j; 91 a[tmp++] = j; 92 tt = j; 93 vec.push_back(tt); 94 } 95 pp[ok] += a[i]-j; 96 j = a[i]; 97 } 98 } 99 tot = tmp; 100 sort (a, a+tot); 101 for (int i = 0; i < vec.size(); i++) 102 { 103 int qq = vec[i]; 104 if (pp.count(qq) >= 1) 105 { 106 int ix = lower_bound(a, a+tot, qq)-a+1; 107 kk[ix] = pp[qq]; 108 } 109 } 110 for (int i = 0; i < n; i++) 111 { 112 A[i] = lower_bound(a,a+tot, A[i]) - a + 1; // 离散化 113 B[i] = lower_bound(a,a+tot, B[i]) - a + 1; 114 } 115 maxv = lower_bound(a, a+tot, maxv) - a + 1; 116 M = maxv+10; 117 for (int i = 1; i <= maxv; i++) 118 { 119 p[i] = i; 120 } 121 for (int i = 0; i < n; i++) 122 { 123 swap(p[A[i]], p[B[i]]); 124 } 125 long long ans = 0; 126 long long cnt = 0; 127 for (int i = 1; i <= maxv; i++) 128 { 129 ans += (long long)(i-1+cnt - sum(p[i]))*max(1,kk[i]); 130 modify(p[i], max(1,kk[i])); 131 cnt += max(1,kk[i]) - 1; 132 } 133 printf("%I64d ", ans); 134 } 135 return 0; 136 }