• 常见积性函数(转自百科)


    前面做hdu1452 用过积性函数这个东西。。。刚才遇到又不会了。所以弄一点资料提醒一下自己

    在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。  

    在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。

    若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。[1]

    s(6)=s(2)*s(3)=3*4=12;

    s(20)=s(4)*s(5)=7*6=42;

    再看 s(50)= 1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.

    这在数论中叫积性函数,当gcd(a,b)=1时 s(a*b)=s(a)*s(b);

    性质1

      积性函数的值完全由质数的幂决定,这和算术基本定理有关。

    即是说,若将n表示成质因子分解式

    则有

    性质2

          若f为积性函数且有

           则f为完全积性函数。

    积性

      φ(n) -欧拉函数,计算与n互质的正整数之数目

      μ(n) -莫比乌斯函数,关于非平方数的质因子数目

      gcd(n,k)-最大公因子,当k固定的情况

      d(n) -n的正因子数目

      σ(n) -n的所有正因子之和

      σk(n)-因子函数,n的所有正因子的k次之和,当中k可为任何复数

      1(n) -不变的函数,定义为 1(n) = 1 (完全积性)

      Id(n)-单位函数,定义为 Id(n) = n(完全积性)

      Idk(n)-幂函数,对于任何复数、实数k,定义为Idk(n) = n^k(完全积性)

      ε(n) -定义为:若n = 1,ε(n)=1;若 n > 1,ε(n)=0。别称为“对于狄利克雷卷积的乘法单位”(完全积性)

      λ(n) -刘维尔函数,关于能整除n的质因子的数目

      γ(n),定义为γ(n)=(-1)^ω(n),在此加性函数ω(n)是不同能整除n的质数的数目

    另外,所有狄利克雷特征均是完全积性的[1]

    非积性

      冯·曼戈尔特函数:当n是质数p的整数幂,Λ(n)=ln(p),否则Λ(n)=0

      不大于正整数n的质数的数目π(n)

      整数拆分的数目P(n):一个整数能表示成正整数之和的方法的数目[2]

  • 相关阅读:
    php实现qq授权登录
    lnmp环境下上传文件过大出现 <服务器IO错误> 问题解决方案
    matpb画图_折线图.ipynb
    垂直条形图——plot.bar
    将博客搬至CSDN
    pandas的函数应用二——排序
    pandas的函数应用一
    pandas的数据对齐
    将一个二维数组的行和列分别进行逆向
    numpy——深拷贝和浅拷贝和不拷贝
  • 原文地址:https://www.cnblogs.com/oneshot/p/3979869.html
Copyright © 2020-2023  润新知