• numpy.argsort详解


    numpy.argsort(aaxis=-1kind='quicksort'order=None)[source]

    Returns the indices that would sort an array.

    Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

    Parameters:

    a : array_like

    Array to sort.

    axis : int or None, optional

    Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

    kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

    Sorting algorithm.

    order : str or list of str, optional

    When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

    Returns:

    index_array : ndarray, int

    Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a.

    See also

    sort
    Describes sorting algorithms used.
    lexsort
    Indirect stable sort with multiple keys.
    ndarray.sort
    Inplace sort.
    argpartition
    Indirect partial sort.

    Notes

    See sort for notes on the different sorting algorithms.

    As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

    Examples

    One dimensional array:

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])
    

    Two-dimensional array:

    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])
    
    >>> np.argsort(x, axis=0)  # sorts along first axis (down)
    array([[0, 1],
           [1, 0]])
    
    >>> np.argsort(x, axis=1)  # sorts along last axis (across)
    array([[0, 1],
           [0, 1]])
    

    Indices of the sorted elements of a N-dimensional array:

    >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
    >>> ind
    (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
    >>> x[ind]  # same as np.sort(x, axis=None)
    array([0, 2, 2, 3])
    

    Sorting with keys:

    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])
    
    >>> np.argsort(x, order=('x','y'))
    array([1, 0])
    
    >>> np.argsort(x, order=('y','x'))
    array([0, 1])
  • 相关阅读:
    [Angular] How to show global loading spinner for application between page navigation
    [NgRx] NgRx Data Fetching Solution
    [NgRx] NgRx Entity Adapter Configuration
    [Javascript] Construct a Regex to Match Twitter Mentions with Regexr
    [Dart] Dynamic variable in Dart
    [NgRx] NgRx Runtime Checks
    [NgRx] Setting up NgRx Router Store and the Time-Travelling Debugger
    浅析数据库设计三范式
    建议别买三星Gear:半电脑产品 设计糟糕
    持续集成理论和实践的新进展
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/9118095.html
Copyright © 2020-2023  润新知