• 算法导论 practice1


    1、      (2.3.7) Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.给定含有n个整型数的集合S和整型数x,确定s中是否存在两个元素的和等于x。算法时间复杂度为c塔nlgn。

     

    判断是否存在的函数的时间复杂度小于0(nlgn),归并排序的时间复杂度是0(nlgn)。

     2 
     3 #include<stdio.h>
     4 #include<stdlib.h>
     5 void merge(int arr[],int low,int mid,int high){
     6      int i,k;
     7      int *tmp=(int*)malloc((high-low+1)*sizeof(int));
     8      int left_low=low;
     9      int left_high=mid;
    10      int right_low=mid+1;
    11      int right_high=high;
    12      for(k=0;left_low<=left_high&&right_low<=right_high;k++)
    13      {
    14      if(arr[left_low]<=arr[right_low]){
    15                                        tmp[k]=arr[left_low++];
    16                                        }
    17      else{
    18           tmp[k]=arr[right_low++];
    19           }
    20 } 
    21      
    22      if(left_low<=left_high){
    23                              for(i=left_low;i<=left_high;i++){
    24                                                               tmp[k++]=arr[i];
    25                                                               }
    26                              }
    27       if(right_low<=right_high){
    28                              for(i=right_low;i<=right_high;i++)
    29                                                                tmp[k++]=arr[i];
    30                                                        }
    31                              for(i=0;i<high-low+1;i++)
    32                                                       arr[low+i]=tmp[i];
    33      
    34 }
    35 
    36 void merge_sort(int a[],int p,int r){
    37      int q;
    38      if(p<r){
    39              q=(p+r)/2;
    40              merge_sort(a,p,q);
    41              merge_sort(a,q+1,r);
    42              merge(a,p,q,r);
    43              }
    44      }
    45 int main(){
    46     int a[8]={3,5,8,6,4,1,1};
    47     int i,j;
    48     int x=10;
    49     merge_sort(a,0,6);
    50     printf("after Merging-Sort:
    ");
    51     for(i=0;i<7;i++){
    52                      printf("%d",a[i]);
    53                      }
    54     printf("
    ");
    55     i=0;j=6;
    56     do{
    57                  
    58                  if(a[i]+a[j]==x){
    59                                  printf("exist");
    60                                  break;
    61                                  }
    62                  if(a[i]+a[j]>x)
    63                                 j--;
    64                  if(a[i]+a[j]<x)
    65                                 i++;
    66                       }while(i<=j);
    67     if(i>j) 
    68             printf("not exist");
    69     system("pause");
    70     return 0;
    71     }

    2、      Implement priority queue.

    优先队列

     

      1  
      2 
      3 #include<stdlib.h>
      4 #include<stdio.h>
      5 #include<math.h>
      6 #define SIZE 7
      7 int PARENT(int i){
      8     return (int)floor(i/2);
      9     }
     10 int LEFT(int i){
     11     return 2*i;
     12     }
     13 int RIGHT(int i){
     14     return 2*i+1;
     15     }
     16 void MAX_HEAPIFY(int arr[],int i){
     17      int l=LEFT(i);
     18      int r=RIGHT(i);
     19      int largest;
     20      if(l<=SIZE&&arr[l]>arr[i]){
     21                                            largest=l;
     22                                            }
     23      else largest=i;
     24      if(r<SIZE&&arr[r]>arr[largest]){
     25                                                  largest=r;
     26                                                  }
     27      if(!largest==i){
     28                     int t;
     29                     t=arr[i];arr[i]=arr[largest];arr[largest]=t;
     30                     MAX_HEAPIFY(arr,i);
     31                     }
     32      }
     33 void BULID_MAX_HEAP(int arr[]){
     34      //SIZE=arr[].length;
     35      for(int i=(int)floor(SIZE/2);i>0;i--){
     36              MAX_HEAPIFY(arr,i);
     37              }
     38      }
     39 void HEAPSORT(int arr[]){
     40      BULID_MAX_HEAP(arr);
     41      int length=SIZE;
     42      for(int i=length;i>1;i--){
     43              int t;
     44              t=arr[1];arr[1]=arr[i];arr[i]=t;
     45              length=length-1;
     46              MAX_HEAPIFY(arr,1);
     47              }
     48      }
     49 
     50 int HEAP_MAXIMUM(int arr[]){
     51     return arr[1];
     52     }
     53 int HEAP_EXTRACT_MAX(int arr[]){
     54     if (SIZE<1){
     55                            printf("error:heap underflow");
     56                            }
     57     int max=arr[1];
     58     arr[1]=arr[SIZE];
     59     int length=SIZE;
     60     length=length-1;
     61     MAX_HEAPIFY(arr,1);
     62     return max;
     63     }
     64 void HEAP_INCREASE_KEY(int arr[],int i,int key){
     65      if(key<arr[i]){
     66                     printf("error:new key is smaller than current key");
     67                     }
     68      arr[i]=key;
     69      while (i>1&&arr[PARENT(i)]<arr[i]){
     70            int t;
     71            t=arr[i];arr[i]=arr[PARENT(i)];arr[PARENT(i)]=t;
     72            i=PARENT(i);
     73            } 
     74      }
     75 void MAX_HEAP_INSERT(int arr[],int key){
     76      int length=SIZE;
     77     length=length+1;
     78      arr[SIZE]=-10000;
     79      HEAP_INCREASE_KEY(arr,SIZE,key);
     80      }
     81 /*int HEAP_MAXIMUM(int arr[]){
     82     BULID_MAX_HEAP(arr[]);
     83     return arr[1];
     84     }
     85     */
     86 int main(){
     87     int arr[7]={3,5,8,6,4,1,1};
     88     int key,i;
     89     HEAPSORT(arr);
     90     printf("堆排序后:");
     91     for(int i=0;i<7;i++){
     92                      printf("%d ",arr[i]);
     93                      }
     94     printf("
    "); 
     95     printf("最大值是:%d
    ",HEAP_MAXIMUM(arr));
     96     HEAP_EXTRACT_MAX(arr);
     97     printf("已经去掉最大值
    ");
     98     printf("请输入key的值");
     99     scanf("%d",&key); 
    100     printf("请输入i的值");
    101     scanf("%d",&i);
    102     HEAP_INCREASE_KEY(arr,i,key);
    103     printf("已经把下标为i的元素值增加到key");
    104     system("pause");    
    105     return 0;
    106 
    107     }

    3、      Implement Quicksort and Randomized Quicksort. Answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value? (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively.

    实现Quicksoet和Randomized。

    实现普通快速排序的两个函数:

    实现随机快速排序的两个函数:

      

    请回答1、列表中n个元素的值都相同时,Quicksoet比较几次。

    答: (n-1)+(n-2)+…+1=n(n-1)/2

    2、列表中有n个元素,比较次数的最大值最小值是多少,分别给出对应情况。

    答:最坏情况是枢纽元素把其余数字分的个数区别很大,O(n­­方)

    最好情况是枢纽元素恰好是中位数,O(nlgn)

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<math.h>
     4 int PARTITION(int a[],int p,int r){
     5     int x=a[r];
     6     int i=p-1;
     7     int j;
     8     for(j=p;j<r;j++){
     9                      if(a[j]<=x){
    10                                  i=i+1;
    11                                  int t=a[i];a[i]=a[j];a[j]=t;
    12                                  }
    13                      } 
    14     int t=a[i+1];a[i+1]=a[r];a[r]=t;
    15     return i+1;
    16     }
    17     
    18 void QUICKSORT(int a[],int p,int r){
    19      int q;
    20      if(p<r){
    21              q=PARTITION(a,p,r);
    22              QUICKSORT(a,p,q-1);
    23              QUICKSORT(a,q+1,r);
    24              }
    25      }
    26      
    27 int RAN_PAR(int a[],int p,int r){
    28     int i=p + rand()%(r-p+1);
    29     int t=a[r];a[r]=a[i];a[i]=t;
    30     return PARTITION(a,p,r);
    31     }
    32 void RAN_QUI(int a[],int p,int r){
    33      if(p<r){
    34              int q=RAN_PAR(a,p,r);
    35              RAN_QUI(a,p,q-1);
    36              RAN_QUI(a,q+1,r);
    37              }
    38      }
    39 
    40 int main(){
    41     int a[8]={3,5,8,6,4,1,1};
    42     int i;
    43     printf("输入1进行QUICKSORT,输入2进行RAN-QUI
    请输入:
    ");
    44     int k;
    45     scanf("%d",&k);
    46     
    47     if(k==1){ 
    48     printf("after QUICKSORT:
    ");
    49     QUICKSORT(a,0,6);
    50     for(i=0;i<7;i++){
    51                      printf("%d",a[i]);
    52                      }
    53     printf("
    ");
    54     }
    55     
    56     if(k==2){
    57     printf("after RAN-QUI:
    ");
    58     RAN_QUI(a,0,6);
    59     for(i=0;i<7;i++){
    60                      printf("%d",a[i]);
    61                      }
    62     printf("
    ");
    63     }
    64     system("pause");
    65     return 0;
    66     }

    4、(8.2) Sorting in place in linear time

    Suppose that we have an array of n data records to sort and that the key of each record has the value 0 or 1. An algorithm for sorting such a set of records might possess some subset of the following three desirable characteristics:

    1. The algorithm runs in O(n) time.

    2. The algorithm is stable.

    3. The algorithm sorts in place, using no more than a constant amount of storage space in addition to the original array.

    a. Give an algorithm that satisfies criteria 1 and 2 above.

    b. Give an algorithm that satisfies criteria 1 and 3 above.

    c. Give an algorithm that satisfies criteria 2 and 3 above.

    d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records with b-bit keys in O(bn) time? Explain how or why not.

    e. Suppose that the n records have keys in the range from 1 to k. Show how to modify counting sort so that it sorts the records in place in O(n+k) time. You may use O(k) storage outside the input array. Is your algorithm stable? (Hint: How would you do it for k = 3?)

    线性时间排序假设对一个有n个数据记录的数组进行排序,每个记录的key值是0或1,。设计给其排序的算法,该算法要包含以下3个要求:1、O(N);2、稳定;3、原址排序,使用的空间不能超过原数据的

    A、满足1 2

    B、满足1 3

    C、满足2 3

    D、能否将abc中的算法用于基数排序第二行,使其在排序有b个关键字的n个记录时的时间复杂度为o(bn)

    E、假设有n条记录,关键字的范围是1-k。怎么修改基数排序使其为o(n+k)的原址排序。除了输入数组外,可以使用o(k)的额外存储。给出的算法稳定么(提示:当k=3时怎么做?)

    4a计数排序满足o(n)和稳定

     2 
     3 #include<stdio.h>
     4 #include<stdlib.h>
     5 #define A_LENGTH 8
     6 void COUNTING_SORT(int a[],int b[],int k){
     7      int c[6];
     8      for(int i=0;i<k;i++){
     9              c[i]=0;
    10              }
    11      for(int j=0;j<A_LENGTH;j++){
    12              c[a[j]]=c[a[j]]+1;
    13              }
    14      for(int i=0;i<k;i++){
    15              c[i]=c[i]+c[i-1];
    16              }
    17      for(int j=A_LENGTH-1;j>0;j--){
    18              b[c[a[j]]]=a[j];
    19              c[a[j]]=c[a[j]]-1;
    20             }
    21       }
    22 int main(){
    23     int a[8]={2,5,3,0,2,3,0,3};
    24     int b[8]={0,0,0,0,0,0,0,0};
    25     COUNTING_SORT(a,b,6);
    26     for(int i=0;i<A_LENGTH;i++){
    27             printf("%d ",b[i]);
    28             }
    29             
    30     system("pause");
    31     return 0;
    32     }

    4b 冒泡排序满足o(n)和原址

     

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 void bubble_sort(int a[],int n)
     4 {
     5     for(int i=0; i<n-1; i++)
     6     {
     7         for(int j=0; j<n-1-i; j++)
     8         {
     9             if(a[j] > a[j+1])
    10             {
    11                 int temp = a[j];a[j] = a[j+1];a[j+1]=temp;
    12             }
    13         }
    14     }
    15 }
    16 int main(){
    17     int a[8]={4,5,6,3,2,1,8,7};
    18     bubble_sort(a,8);
    19     printf("冒泡排序最好情况满足o(n)和原址
    ");
    20     for(int i=0;i<8;i++){
    21             printf("%d ",a[i]);
    22             }
    23     system("pause");
    24     return 0;
    25     }

    4c 插入排序满足稳定和原址

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #define N 8
     4 void insert_sort(int a[],int n)
     5 {
     6     for(int i=1; i<n; i++)
     7     {
     8         int j=0;
     9         while( (a[j]<a[i]) && (j<i))
    10         {
    11             j++;
    12         }
    13         if(i != j)        {
    14             int temp = a[i];
    15             for(int k = i; k > j; k--)
    16             {
    17                 a[k] = a[k-1];
    18             }
    19             a[j] = temp;
    20         }
    21     }
    22 }
    23 int  main()
    24 {
    25     int num[N] = {4,5,6,3,2,1,8,7};
    26     insert_sort(num, N);
    27     printf("插入排序满足稳定和原址
    ");
    28     for(int i=0; i<N; i++)
    29         printf("%d  ", num[i]);
    30     printf("
    ");
    31     system("pause");
    32     return 0;
    33 }

    4d

    计数排序可以,因为其时间复杂度为o(n)且稳定。给定n

    个b位数,其中每一个数位有k种可能取值,耗时为c塔n+k,则基数排序耗时c塔(b(n+k)),即o(bn)。

    4e

    当K=3时的示例图:

    伪代码:

    For i=k downto 1{

    For(n=a.length;c[k]>0;c[k]--){

                                        A[n]=I;

                                        n--;

    }

    }

    根据c数组记录a中元素出现的次数,在a数组中直接替换,不引入b数组。

  • 相关阅读:
    Oracle2MySQL数据校验
    MySQL物理删除大表文件的方式
    MySQL恢复误删除的ibd文件
    如何下载MySQL企业版数据库
    C++篇之成员函数注册为回调函数
    Java入门篇
    日常收藏之Linux篇
    实现简单网页rtmp直播:nginx+ckplayer+linux
    网络通信之accept函数简述
    网络通信之bind、listen函数简述
  • 原文地址:https://www.cnblogs.com/olivegyr/p/6709505.html
Copyright © 2020-2023  润新知