• P2053 [SCOI2007]修车 费用流


    $ color{#0066ff}{ 题目描述 }$

    同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。

    说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

    (color{#0066ff}{输入格式})

    第一行有两个数M,N,表示技术人员数与顾客数。

    接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。

    (color{#0066ff}{输出格式})

    最小平均等待时间,答案精确到小数点后2位。

    (color{#0066ff}{输入样例})

    2 2
    3 2
    1 4
    

    (color{#0066ff}{输出样例})

    1.50
    

    (color{#0066ff}{数据范围与提示})

    (2<=M<=9,1<=N<=60), (1<=T<=1000)

    (color{#0066ff}{题解})

    这种对应关系还有数据范围,显然就是费用流了

    现在的问题是怎么建边

    发现,每辆车的等待时间跟前面修车人所修的车有关

    假设某人修了10辆车

    那么他修第一辆的时候,后面9人都等了这个时间,也就是贡献+=9倍的这个时间

    因此我们单独考虑这个人修的每一辆车对时间的贡献

    把每个人都拆成n个点

    对于一个人的第k个点,连向它的车代表他倒数第k次修它

    也就是连T*k的边权,倒数第k次修它,那么后面k辆车就会产生这么多贡献

    跑一遍费用流即可(zkw大法好)

    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 1e5 + 10;
    const int inf = 0x7fffffff;
    struct node {
    	int to, can, dis;
    	node *nxt, *rev;
    	node(int to = 0, int can = 0, int dis = 0, node *nxt = NULL): to(to), can(can), dis(dis), nxt(nxt) {
    		rev = NULL;
    	}
    };
    node *head[maxn], *cur[maxn];
    bool vis[maxn];
    int n, m, s, t;
    int dis[maxn];
    void add(int from, int to, int can, int dis) {
    	head[from] = new node(to, can, dis, head[from]);
    }
    void link(int from, int to, int can, int dis) {
    	add(from, to, can, dis);
    	add(to, from, 0, -dis);
    	head[from]->rev = head[to];
    	head[to]->rev = head[from];
    }
    bool spfa() {
    	std::queue<int> q;
    	for(int i = s; i <= t; i++) dis[i] = inf, vis[i] = false;
    	q.push(t);
    	dis[t] = 0;
    	while(!q.empty()) {
    		int tp = q.front(); q.pop();
    		vis[tp] = false;
    		for(node *i = head[tp]; i; i = i->nxt) {
    			if(dis[i->to] > dis[tp] - i->dis && i->rev->can) {
    				dis[i->to] = dis[tp] - i->dis;
    				if(!vis[i->to]) {
    					q.push(i->to);
    					vis[i->to] = true;
    				}
    			}
    		}
    	}
    	return dis[s] != inf;
    }
    int dfs(int x, int change) {
    	
    	if(x == t || !change) return change;
    	int flow = 0, ls;
    	vis[x] = true;
    	for(node *i = head[x]; i; i = i->nxt) {
    		if(!vis[i->to] && dis[i->to] == dis[x] - i->dis && (ls = dfs(i->to, std::min(change, i->can)))) {
    			flow += ls;
    			change -= ls;
    			i->can -= ls;
    			i->rev->can += ls;
    			if(!change) break;
    		}
    	}
    	return flow;
    }
    
    int zkw() {
    	int cost = 0;
    	while(spfa()) {
    		vis[t] = true;
    		while(vis[t]) {
    			for(int i = s; i <= t; i++) vis[i] = false;
    			cost += dis[s] * dfs(s, inf);
    		}
    	}
    	return cost;
    }
    int main() { 
    	m = in(), n = in(), s = 0, t = m * n + n + 1;
    	for(int i = 1; i <= m; i++)
    		for(int j = 1; j <= n; j++)
    			link(s, (i - 1) * n + j, 1, 0);
    	for(int i = 1; i <= n; i++) link(m * n + i, t, 1, 0);
    	for(int i = 1; i <= n; i++)
    		for(int j = 1; j <= m; j++) {
    			int x = in();
    			for(int k = 1; k <= n; k++) link((j - 1) * n + k, n * m + i, 1, k * x);
    		}
    	printf("%.2f
    ", (double)zkw() / n);
    	return 0;
    }
    
  • 相关阅读:
    解析excel表格为DataSet
    easyui 上传文件代码
    上传文件后台代码
    easyui dialog
    C++ 强制设置文件大小
    std::function与std::bind
    glog 编译报错 ERROR macro is defined. Define GLOG_NO_ABBREVIATED_SEVERITIES before including logging.h. See the document for detail.
    Qt删除目录
    C++11 中的std::function和std::bind
    TortoiseGit 使用教程
  • 原文地址:https://www.cnblogs.com/olinr/p/10466975.html
Copyright © 2020-2023  润新知