(color{#0066ff}{ 题目描述 })
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
(color{#0066ff}{输入格式})
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
(color{#0066ff}{输出格式})
共n行,每行一个整数表示满足要求的数对(x,y)的个数
(color{#0066ff}{输入样例})
2
2 5 1 5 1
1 5 1 5 2
(color{#0066ff}{输出样例})
14
3
(color{#0066ff}{数据范围与提示})
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
(color{#0066ff}{ 题解 })
abcd的范围有些恶心,考虑拆开算
显然可以当做二维前缀和一样的东西处理
因此转化为求
[sum_{i=1}^nsum_{j=1}^m [gcd(i,j)==k]
]
把k除过去
[sum_{i=1}^{lfloor frac n k
floor} sum_{j=1}^{lfloor frac m k
floor} [gcd(i,j)==1]
]
因为有
[e(n)=[n==1]
]
[mu*i=e
]
[i(n)=1
]
所以
[e(n)=sum_{d|n} mu(d)*i(frac n d)=sum_{d|n} mu(d)
]
因此原式可以化成
[sum_{i=1}^{lfloor frac n k
floor} sum_{j=1}^{lfloor frac m k
floor} sum_{d|gcd(i,j)} mu(d)
]
[d|gcd(i,j) o d|i ,d|j
]
i和j都是d的倍数,考虑枚举d,那么有多少i,j满足是d的倍数呢?
原式变成
[sum_{d=1}^{min(lfloor frac n k
floor,lfloor frac m k
floor)} mu(d) *lfloor frac{n}{kd}
floor * lfloor frac{m}{kd}
floor
]
把(mu)前缀和一下,然后后面整数分块搞一搞就行了
还有懵逼鸟斯推法这是什么??
来自--y2823774827y
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 10;
int k;
int pri[maxn], mu[maxn], tot;
bool vis[maxn];
void predoit() {
mu[1] = 1;
for(int i = 2; i <= 50505; i++) {
if(!vis[i]) pri[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && i * pri[j] <= 50505; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 2; i <= 50505; i++) mu[i] += mu[i - 1];
}
LL work(int n, int m) {
n /= k, m /= k;
LL ans = 0;
for(int l = 1, r; l <= std::min(n, m); l = r + 1) {
r = std::min(n / (n / l), m / (m / l));
ans += (LL)(n / l) * (m / l) * (mu[r] - mu[l - 1]);
}
return ans;
}
int main() {
predoit();
for(int T = in(); T --> 0;) {
int a = in(), b = in(), c = in(), d = in();
k = in();
printf("%lld
", work(b, d) - work(a - 1, d) - work(b, c - 1) + work(a - 1, c - 1));
}
return 0;
}