• CF1082G Petya and Graph


    (color{#0066ff}{ 题目描述 })

    定义(图权 = 图中边权总和 − 图中点权总和)(空图的图权 =0),求 (n) 个点 (m) 条边的无向图最大权子图。

    (color{#0066ff}{输入格式})

    第一行为n,m

    第二行为点权

    接下来为边

    (color{#0066ff}{输出格式})

    输出一行为最大权子图

    (color{#0066ff}{输入样例})

    4 5
    1 5 2 2
    1 3 4
    1 4 4
    3 4 5
    3 2 2
    4 2 2
       
        
    3 3
    9 7 8
    1 2 1
    2 3 2
    1 3 3
    

    (color{#0066ff}{输出样例})

    8
        
       
    0
    

    (color{#0066ff}{数据范围与提示})

    (1leq n leq 10^3, m leq 10 ^3)

    (color{#0066ff}{ 题解 })

    最大流最小割定理

    S向所有边建容量为边权的边

    所有点向T建容量为点权的边

    每条边向对应的两个点建容量为inf的边

    (ans=sum 边权-最大流(最小割))

    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 1e4 + 10;
    const int inf = 0x7fffffff;
    struct node {
    	int to;
    	LL dis;
    	node *nxt, *rev;
    	node(int to = 0, LL dis = 0, node *nxt = NULL):to(to), dis(dis), nxt(nxt) {}
    	void *operator new(size_t) {
    		static node *S = NULL, *T = NULL;
    		return (S == T) && (T = (S = new node[1024]) + 1024), S++;
    	}
    };
    int n, m, s, t;
    int dep[maxn];
    std::queue<int> q;
    node *head[maxn], *cur[maxn];
    void add(int from, int to, LL dis) {
    	head[from] = new node(to, dis, head[from]);
    }
    void link(int from, int to, int dis) {
    	add(from, to, dis), add(to, from, 0);
    	head[from]->rev = head[to];
    	head[to]->rev = head[from];
    }
    bool bfs() {
    	for(int i = s; i <= t; i++) dep[i] = 0, cur[i] = head[i];
    	q.push(s);
    	dep[s] = 1;
    	while(!q.empty()) {
    		int tp = q.front(); q.pop();
    		for(node *i = head[tp]; i; i = i->nxt)
    			if(!dep[i->to] && i->dis) 
    				dep[i->to] = dep[tp] + 1, q.push(i->to);
    	}
    	return dep[t];
    }
    LL dfs(int x, LL change) {
    	if(x == t || !change) return change;
    	LL flow = 0, ls;
    	for(node *i = cur[x]; i; i = i->nxt) {
    		cur[x] = i;
    		if(dep[i->to] == dep[x] + 1 && (ls = dfs(i->to, std::min(change, i->dis)))) {
    			flow += ls;
    			change -= ls;
    			i->dis -= ls;
    			i->rev->dis += ls;
    			if(!change) break;
    		}
    	}
    	return flow;
    }
    LL dinic() {
    	LL flow = 0;
    	while(bfs()) flow += dfs(s, inf);
    	return flow;
    }
    LL ans;
    int main() {
    	n = in(), m = in();
    	s = 0, t = n + m + 1;
    	LL x, y, z;
    	for(int i = 1; i <= n; i++) z = in(), link(m + i, t, z);
    	for(int i = 1; i <= m; i++) {
    		x = in(), y = in(), z = in();
    		link(s, i, z);
    		link(i, m + x, inf);
    		link(i, m + y, inf);
    		ans += z;
    	}
    	printf("%lld
    ", ans - dinic());
    	return 0;
    }
    
  • 相关阅读:
    php注册、登录界面的制作
    php将表单中数据传入到数据库
    数据操作
    Hibernate入门(五)---------事务管理
    MySQL事务(学习笔记)
    Hibernate入门(四)---------一级缓存
    Hibernate入门(三)
    反射demo(拷贝一个对象)
    反射学习小结
    Hibernate入门(二)——hibernateAPI详解
  • 原文地址:https://www.cnblogs.com/olinr/p/10265034.html
Copyright © 2020-2023  润新知