• CF1082E Increasing Frequency


    (color{#0066ff}{ 题目描述 })

    给你一个长度为 (n) 的数列 (a) ,你可以任意选择一个区间 ([l,r]), 并给区间每个数加上一个整数 (k), 求这样一次操作后数列中最多有多少个数等于 (c)

    (color{#0066ff}{输入格式})

    第一行两个整数 (n), (c) . 第二行 (n) 个整数 (a_1,a_2,...,a_n).

    (color{#0066ff}{输出格式})

    输出一个整数表示答案。

    (color{#0066ff}{输入样例})

    6 9
    9 9 9 9 9 9
        
        
        
    3 2
    6 2 6
    

    (color{#0066ff}{输出样例})

    6
    
        
    2
    

    (color{#0066ff}{数据范围与提示})

    (1le n,c,a_i le 5cdot 10^5).

    (color{#0066ff}{ 题解 })

    考虑暴力,枚举区间左右端点

    当前的答案为区间内出现最多的数的个数+区间外c的个数

    对于区间外c的个数,可以用前缀后缀和来维护

    现在考虑区间维护

    可以发现,离散化后的数最多n个

    既然不知道区间出现最多的数的次数

    就考虑枚举值域,强制让其为次数最多的数,开vector记录出现的位置

    上面的强制是不会影响答案的(因为一定会找到最优情况)

    对于枚举的每个位置,考虑(ans = x + y + r - l + 1)

    x是l前面c的个数(前缀和维护),y是r后面c的个数(后缀和维护)

    (r - l + 1)是出现次数,因为我们用vector存了它出现的位置,所以直接vector下标作差就是出现次数

    (ans = (x -l) + (r+y+1))

    要使ans最大, 则两边都最大,而且左边只与l有关,右边只与r有关

    我们枚举l的时候,左边的值是固定的,然后对于右边的值,开个变量维护一下max就行

    因为总共就n个位置,所以复杂度(O(n))

    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 5e5 + 100;
    int n, c, a[maxn], b[maxn];
    int l[maxn], r[maxn], dp[maxn];
    std::vector<int> v[maxn];
    int main() {
    	n = in(), c = in();
    	for(int i = 1; i <= n; i++) a[i] = b[i] = in();
    	b[n + 1] = c;
    	std::sort(b + 1, b + n + 2);
    	int len = 1;
    	for(int i = 2; i <= n + 1; i++) if(b[i] != b[i - 1]) b[++len] = b[i];
    	for(int i = 1; i <= n; i++) a[i] = std::lower_bound(b + 1, b + len + 1, a[i]) - b;
    	c = std::lower_bound(b + 1, b + len + 1, c) - b;
    	for(int i = 1; i <= n; i++) l[i] = l[i - 1] + (a[i] == c);
    	for(int i = n; i >= 1; i--) r[i] = r[i + 1] + (a[i] == c);
    	for(int i = 1; i <= n; i++) v[a[i]].push_back(i);
    	for(int i = 1; i <= len; i++) {
    		int max = -maxn;
    		for(int j = (int)v[i].size() - 1; j >= 0; j--) {
    			max = std::max(max, r[v[i][j] + 1] + 1 + j);
    			dp[i] = std::max(dp[i], max + l[v[i][j] - 1] - j);
    		}
    	}
    	int ans = 0;
    	for(int i = 1; i <= len; i++) ans = std::max(ans, dp[i]);
    	printf("%d
    ", ans);
    	return 0;
    }
    /*x + y + j - i + 1 = (x - i) + (y + j + 1) */
    
  • 相关阅读:
    C#扩展方法学习
    如何用PS快速做出3D按钮效果的图片
    比较C#中几种常见的复制字节数组方法的效率[转]
    GUID的学习
    委托与事件的区别
    利用Marshal.AllocHGlobal申请非托管内存,unsafe代码
    JAVASE(十三) 异常处理
    JAVASE(十二) Java常用类: 包装类、String类、StringBuffer类、时间日期API、其他类
    JAVASE(十一) 高级类特性: abstract 、模板模式、interface、内部类、枚举、注解
    面试题: SpringBoot 的自启动原理
  • 原文地址:https://www.cnblogs.com/olinr/p/10263970.html
Copyright © 2020-2023  润新知