(color{#0066ff}{题目描述})
给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,询问区间内小于某个值 x 的前驱(比其小的最大元素)。
(color{#0066ff}{输入格式})
第一行输入一个数字 n。
第二行输入 n 个数字,第 i 个数字为 (a_i),以空格隔开。
接下来输入 n 行询问,每行输入四个数字 (mathrm{opt}、l、r、c),以空格隔开。
若 (mathrm{opt} = 0),表示将位于 ([l,r]) 的之间的数字都加 c。
若 (mathrm{opt} = 1),表示询问 ([l,r]) 中 c 的前驱的值(不存在则输出 -1)。
(color{#0066ff}{输出格式})
对于每次询问,输出一行一个数字表示答案。
(color{#0066ff}{输入样例})
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
(color{#0066ff}{输出样例})
3
-1
(color{#0066ff}{题解})
开一个数组记录序列,保证块内有序
对于区间加,如果是整块,打标记,因为相对大小不变,所以不用管数组
如果是散块,暴力修改,同时改变数组,并重新排序
对于询问,初始定为极小值
对于整块,直接lowerbound-1找到区间内的前驱
注意,如果找不到,返回的是l-1,所以特盘返回极小值
因为找的时候无法让整个序列加上标记,所以lowerbound的时候要找x-标记
最后返回答案的时候要把标记加上
#include<cstdio>
#include<queue>
#include<vector>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<cmath>
#define _ 0
#define LL long long
#define Space putchar(' ')
#define Enter putchar('
')
#define fuu(x,y,z) for(int x=(y),x##end=z;x<=x##end;x++)
#define fu(x,y,z) for(int x=(y),x##end=z;x<x##end;x++)
#define fdd(x,y,z) for(int x=(y),x##end=z;x>=x##end;x--)
#define fd(x,y,z) for(int x=(y),x##end=z;x>x##end;x--)
#define mem(x,y) memset(x,y,sizeof(x))
#ifndef olinr
inline char getc()
{
static char buf[100001],*p1=buf,*p2=buf;
return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100001,stdin),p1==p2)? EOF:*p1++;
}
#else
#define getc() getchar()
#endif
template<typename T>inline void in(T &x)
{
int f=1; char ch; x=0;
while(!isdigit(ch=getc()))(ch=='-')&&(f=-f);
while(isdigit(ch)) x=x*10+(ch^48),ch=getc();
x*=f;
}
const int inf=0x7fffffff;
struct K
{
int l,r,tag;
K() {l=inf,r=-inf;}
}e[150505];
struct seq
{
int val,bel;
}a[105050];
int s[105050];
int n,num;
inline int lob(int l,int r,int c,int p)
{
int t=std::lower_bound(s+l,s+r+1,c)-s-1;
if(t==l-1) return -inf;
return s[t]+e[p].tag;
}
inline void init()
{
num=std::sqrt(n);
fuu(i,1,n)
{
in(a[i].val),a[i].bel=(i-1)/num+1,s[i]=a[i].val;
e[a[i].bel].l=std::min(e[a[i].bel].l,i);
e[a[i].bel].r=std::max(e[a[i].bel].r,i);
}
for(int i=1;i<=n;i+=num) std::sort(s+e[a[i].bel].l,s+e[a[i].bel].r+1);
}
inline void add(int l,int r,int c)
{
fuu(i,a[l].bel+1,a[r].bel-1) e[i].tag+=c;
fuu(i,l,std::min(r,e[a[l].bel].r)) a[i].val+=c;
fuu(i,e[a[l].bel].l,e[a[l].bel].r) s[i]=a[i].val;
std::sort(s+e[a[l].bel].l,s+e[a[l].bel].r+1);
if(a[l].bel!=a[r].bel)
{
fuu(i,std::max(l,e[a[r].bel].l),r) a[i].val+=c;
fuu(i,e[a[r].bel].l,e[a[r].bel].r) s[i]=a[i].val;
std::sort(s+e[a[r].bel].l,s+e[a[r].bel].r+1);
}
}
inline int query(int l,int r,int c)
{
int ans=-inf;
fuu(i,a[l].bel+1,a[r].bel-1) ans=std::max(ans,lob(e[i].l,e[i].r,c-e[i].tag,i));
fuu(i,l,std::min(r,e[a[l].bel].r)) if(a[i].val+e[a[i].bel].tag<c) ans=std::max(ans,a[i].val+e[a[i].bel].tag);
if(a[l].bel!=a[r].bel) fuu(i,std::max(l,e[a[r].bel].l),r) if(a[i].val+e[a[i].bel].tag<c) ans=std::max(ans,a[i].val+e[a[i].bel].tag);
return ans==-inf? -1:ans;
}
int main()
{
in(n);
int p,l,r,c;
init();
while(n--)
{
in(p),in(l),in(r),in(c);
if(p==0) add(l,r,c);
else printf("%d
",query(l,r,c));
}
return ~~(0^_^0);
}