题目大意:给您一个数 n, 每次从n的所有约数(包含1、n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7。
题解:考虑暴力,我们设f(n,k)代表答案,则有f(n,k)=sum_{d|n}f(d,k-1)。f(n,0)=n。
我们发现如果把n分解质因数,最后结果就是所有质因子若干次方结果乘积(f是积性函数)。
分解质因数后,我们设g(n,k)代表p^n次方执行k次的结果,由于n是log级别的,所以可以直接dp了。
最后得到了p^0…p^n的分布,加起来乘到答案里就行了。
代码
#include <cstdio> using namespace std; const int xkj = 1000000007; long long n, k, tmp; long long d[30]; int p[30], tot; int f[60], g[60], inv[60]; int qpow(int x, int y) { int res = 1; for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj) if (y & 1) res = res * (long long)x % xkj; return res; } int work(long long p, int m) { for (int i = 0; i < m; i++) f[i] = 0; f[m] = 1; for (int t = 1; t <= k; t++) { for (int i = 0; i <= m; i++) g[i] = 0; for (int i = 0; i <= m; i++) { f[i] = f[i] * (long long)inv[i + 1] % xkj; for (int j = 0; j <= i; j++) { g[j] = (g[j] + f[i]) % xkj; } } for (int i = 0; i <= m; i++) f[i] = g[i]; } int res = 0, tmp = 1; p %= xkj; for (int j = 0; j <= m; j++) res = (res + f[j] * (long long)tmp % xkj) % xkj, tmp = tmp * p % xkj; return res; } int main() { scanf("%lld%lld", &n, &k); tmp = n; for (int i = 0; i < 60; i++) inv[i] = qpow(i, xkj - 2); for (int i = 2; i * (long long)i <= n; i++) { if (tmp % i == 0) { d[++tot] = i, p[tot] = 1, tmp /= i; while (tmp % i == 0) tmp /= i, p[tot]++; } } if (tmp > 1) d[++tot] = tmp, p[tot] = 1; int ans = 1; for (int i = 1; i <= tot; i++) ans = ans * (long long)work(d[i], p[i]) % xkj; printf("%d ", ans); return 0; }