• 多项式多点求值


    给定一个多项式和m个x,求相应的y

    我们把需要求值的点均分成两个集合S1,S2,构造两个多项式P1,P2,使得这两个多项式分别为这两个集合的零点。则多项式A%P1对于S1满足A%P1对S1内元素求值和A相同,A%P2对于S2内求值和A相同,而它们次数都是n/2,分治递归下去继续求值即可。

    由于多项式取模的数组版还不会写,这里借用的以前的vector版,有非常大的优化空间(vector真香)

    #include <bits/stdc++.h>
    using namespace std;
    
    const int p = 998244353;
    
    int qpow(int x, int y)
    {
    	int res = 1;
    	while (y > 0)
    	{
    		if (y & 1)
    			res = 1LL * res * x % p;
    		x = 1LL * x * x % p;
    		y >>= 1;
    	}
    	return res;
    }
    
    void FNTT(vector<int> &A, int len, int flag)
    {
    	A.resize(len);
    	int *r = new int[len];
    	r[0] = 0;
    	for (int i = 0; i < len; i++)
    		r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
    	for (int i = 0; i < len; i++)
    		if (i < r[i])
    			swap(A[i], A[r[i]]);
    	int gn, g, t, A0, A1;
    	for (int i = 1; i < len; i <<= 1)
    	{
    		gn = qpow(3, (p - 1) / (i * 2));
    		for (int j = 0; j < len; j += (i << 1))
    		{
    			g = 1;
    			A0 = j;
    			A1 = A0 + i;
    			for (int k = 0; k < i; k++, A0++, A1++, g = (1LL * g * gn) % p)
    			{
    				t = (1LL * A[A1] * g) % p;
    				A[A1] = ((A[A0] - t) % p + p) % p;
    				A[A0] = (A[A0] + t) % p;
    			}
    		}
    	}
    	if (flag == -1)
    	{
    		reverse(A.begin() + 1, A.end());
    		int inv = qpow(len, p - 2);
    		for (int i = 0; i < len; i++)
    			A[i] = 1LL * A[i] * inv % p;
    	}
    	delete []r;
    }
    
    vector<int> operator*(vector<int> a, vector<int> b)
    {
    	int len = 1;
    	int sz = a.size() + b.size() - 1;
    	while (len <= sz) len <<= 1;
    	FNTT(a, len, 1);
    	FNTT(b, len, 1);
    	vector<int> res;
    	res.resize(len);
    	for (int i = 0; i < len; i++)
    		res[i] = 1LL * a[i] * b[i] % p;
    	FNTT(res, len, -1);
    	res.resize(sz);
    	return res;
    }
    
    vector<int> poly_inv(vector<int> a)
    {
    	if (a.size() == 1)
    	{
    		a[0] = qpow(a[0], p - 2);
    		return a;
    	}
    	int n = a.size(), newsz = (n + 1) >> 1;
    	vector<int> b(a);
    	b.resize(newsz);
    	b = poly_inv(b);
    	int len = 1;
    	while (len <= (n << 1)) len <<= 1;
    	vector<int> c(a);
    	FNTT(a, len, 1);
    	FNTT(b, len, 1);
    	for (int i = 0; i < len; i++)
    		a[i] = ((1LL * b[i] * (2 - 1LL * a[i] * b[i] % p)) % p + p) % p;
    	FNTT(a, len, -1);
    	a.resize(n);
    	return a;
    }
    
    vector<int> poly_r(vector<int> a)
    {
    	reverse(a.begin(), a.end());
    	return a;
    }
    
    void div(vector<int> f, vector<int> g, vector<int> &q, vector<int> &r)
    {
    	int n = f.size() - 1, m = g.size() - 1;
    	vector<int> gr = poly_r(g);
    	gr.resize(n - m + 1);
    	q = poly_r(f) * poly_inv(gr);
    	q.resize(n - m + 1);
    	q = poly_r(q);
    	vector<int> gq = g * q;
    	r.resize(m);
    	gq.resize(m);
    	f.resize(m);
    	for (int i = 0; i < m; i++)
    		r[i] = ((f[i] - gq[i]) % p + p) % p;
    }
    
    int n, m;
    vector<int> f, tmp[1000010];
    int a[100010], res[100010], le[1000010], re[1000010], tot;
    
    vector<int> prework(int l, int r)
    {
    	int id = ++tot;
    	if (l == r)
    	{
    		vector<int> res;
    		res.push_back(p - a[l]);
    		res.push_back(1);
    		tmp[id] = res;
    		return res;
    	}
    	int mid = (l + r) / 2;
    	le[id] = tot + 1;
    	vector<int> res = prework(l, mid);
    	re[id] = tot + 1;
    	res = res * prework(mid + 1, r);
    	return tmp[id] = res;
    }
    
    void work(int l, int r, vector<int> sb)
    {
    	int id = ++tot;
    	if (l == r)
    	{
    		int tmp = 1;
    		for (int i = 0; i < (int)sb.size(); i++)
    			res[l] = (res[l] + tmp * sb[i]) % p, tmp = tmp * (long long)a[l] % p;
    		return;
    	}
    	vector<int> fl = tmp[le[id]], fr = tmp[re[id]];
    	vector<int> tmp1, rel, rer;
    	div(sb, fl, tmp1, rel);
    	div(sb, fr, tmp1, rer);
    	int mid = (l + r) / 2;
    	work(l, mid, rel);
    	work(mid + 1, r, rer);
    }
    
    int main()
    {
    	scanf("%d%d", &n, &m); f.resize(n + 1);
    	for (int i = 0; i <= n; i++) scanf("%d", &f[i]);
    	for (int i = 1; i <= m; i++) scanf("%d", &a[i]);
    	prework(1, max(n, m));
    	tot = 0;
    	work(1, max(n, m), f);
    	for (int i = 1; i <= m; i++) printf("%d
    ", res[i]);
    	return 0;
    }
    
  • 相关阅读:
    【Linux】5.5 Shell运算符
    【Linux】5.4 Shell数组
    【Linux】5.3 Shell字符串
    【Linux】5.2 Shell变量
    【Linux】5.1 Shell简介
    【Linux】3.11 包管理工具(RPM和YUM)
    【Linux】3.10 进程管理(重点)
    【Linux】3.9 网络配置
    【Linux】3.8 Linux磁盘分区、挂载
    【Linux】3.7 定时任务调度
  • 原文地址:https://www.cnblogs.com/oier/p/10403514.html
Copyright © 2020-2023  润新知