• luogu4449 于神之怒加强版(莫比乌斯反演)


    link

    给定n,m,k,计算(sum_{i=1}^nsum_{j=1}^mgcd(i,j)^k)对1000000007取模的结果

    多组数据,T<=2000,1<=N,M,K<=5000000
    推式子

    (sum_{i=1}^nsum_{j=1}^mgcd(i,j)^k)

    (=sum_{p=1}^np^ksum_{i=1}^nsum_{j=1}^m[gcd(i,j)=p])

    (=sum_{p=1}^np^{k}sum_{i=1}^{n/p}sum_{j=1}^{m/p}[gcd(i,j)=1])

    (=sum_{p=1}^np^{k}sum_{i=1}^{n/p}sum_{j=1}^{m/p}sum_{d|i,d|j}mu(d))

    (=sum_{p=1}^np^{k}sum_{d=1}^nmu(d)lfloorfrac n{dp} floorlfloorfrac m{dp} floor)

    (=sum_{q=1}^nsum_{p|q}p^{k}mu(frac qp)lfloorfrac n{q} floorlfloorfrac m{q} floor)

    注意这里求得是个数,不需要提出(p^2)(d^2),我式子推错了两次。。。

    还是枚举倍数对于所有q处理(sum_{p|q}p^{k}mu(frac qp)),然后打数论分块

    注意这里如果定义p为1e9+7就不要再用p了。。。

    #include <cstdio>
    #include <functional>
    using namespace std;
    
    int n, prime[5000010], mu[5000010], tot, fuck = 5000000, p = 1000000007;
    int s[5000010];
    bool vis[5000010];
    
    int qpow(int x, int y)
    {
    	int res = 1;
    	while (y > 0)
    	{
    		if (y & 1) res = res * (long long)x % p;
    		x = x * (long long)x % p;
    		y >>= 1;
    	}
    	return res;
    }
    
    int main()
    {
    	int t, k; scanf("%d%d", &t, &k);
    	mu[1] = 1;
    	for (int i = 2; i <= fuck; i++)
    	{
    		if (vis[i] == 0) prime[++tot] = i, mu[i] = -1;
    		for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
    		{
    			vis[i * prime[j]] = true;
    			if (i % prime[j] == 0) break;
    			mu[i * prime[j]] = -mu[i];
    		}
    	}
    	for (int pp = 1; pp <= fuck; pp++)
    	{
    		int sb = qpow(pp, k);
    		for (int q = pp, d = 1; q <= fuck; q += pp, d++)
    			s[q] = (s[q] + sb * mu[d]) % p;
    	}
    	for (int i = 1; i <= fuck; i++)
    	{
    		// printf("s[%d] = %d
    ", i, s[i]);
    		s[i] = (s[i] + s[i - 1]) % p;
    	}
    	while (t --> 0)
    	{
    		int n, m, ans = 0;
    		scanf("%d%d", &n, &m); if (n > m) swap(n, m);
    		for (int i = 1, j; i <= n; i = j + 1)
    			j = min(n / (n / i), m / (m / i)), ans = (ans + (s[j] - s[i - 1]) * (long long)(n / i) % p * (m / i) % p) % p;
    		if (ans < 0) ans += p;
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    

    56行,交上去一遍A

  • 相关阅读:
    s2sh的MVC执行流程和执行原理
    码支付-个人支付接口-个人收款
    notepad++ FTP同步插件【FanFtpTools】2.0
    自己做的notepad++ FTP同步插件【FanFtpTools】
    thinkphp高并发抢购代码测试-解决高并发下的超卖问题!
    thinkphp5.0 与thinkphp5.1 db()函数的区别
    thinkphp5.1 长连接-单例模式测试之二
    thinkphp5.1长连接-单例模式测试!
    php 全文搜索引擎-讯搜使用
    在线WEB开发编辑器,edt.df5d.com
  • 原文地址:https://www.cnblogs.com/oier/p/10297689.html
Copyright © 2020-2023  润新知